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Landau’s Formula

From Über die Nullstellen der Zetafunktion (1911):

Theorem (Landau’s Formula)

For a fixed x > 1,∑
0<γ≤T

xρ = − T

2π
Λ(x) +O(log T ).

Here ρ = β + iγ are the nontrivial zeros of ζ.

The von Mangoldt function Λ(x) =

{
log p, if x = pn,
0, otherwise.
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Gonek’s Version

Theorem (Gonek–Landau Formula (1993))

Let x, T > 1. Then∑
0<γ≤T

xρ = − T

2π
Λ(x)

+O(x log 2xT log log 3x)

+O

(
log xmin

(
T,

x

〈x〉

))
+O

(
log 2T min

(
T,

1

log x

))
,

where 〈x〉 denotes the distance from x to the nearest prime
power other than x itself.

This is uniform in x!
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Results of Gonek

Corollary 1 (Gonek)

Under the RH, for large T and α real with |α| ≤ 1
2π

log T , we
have∑

0<γ≤T

|ζ(1
2

+ i(γ + 2πα/ log T )|2 =(
1−

(
sinπα

πα

)2
)
T

2π
log2 T +O

(
T log7/4 T

)
.
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Results of Gonek II

Corollary 2 (Gonek)

Assume the RH and fix 0 < α < 1. Then as T →∞∑
0<γ,γ′≤T

(
sin(α

2
(γ − γ′) log T )

α
2
(γ − γ′) log T

)2

∼
(

1

α
+
α

3

)
T

2π
log T.
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Value Distribution of L(s, χ)

Fujii (1976): A positive proportion of zeros of
L(s, ψ)L(s, χ) are distinct.

Grand Simplicity Hypothesis (Wintner, Hooley, Montgomery){
γ : L(1

2
+ iγ, χ) = 0, χ primitive

}
is linearly independent over

Q.

R. Murty and K. Murty (1994): If F,G ∈ S then

|ZF (T )∆ZG(T )| = o(T ) =⇒ F = G,

where ZF (T ) is the set of zeros of F (s) in Re(s) ≥ 1/2,
| Im(s) ≤ T , ∆ is the symmetric difference.
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Our Theorems

Theorem 1 (L–Petridis 2011)

Assume the RH.

Let χ, ψ be real, primitive and non-principal
characters with distinct prime moduli q and `. Fix σ ∈ (1

2
, 1).

Then, for a positive proportion of the nontrivial zeros of ζ with
γ > 0, the values of L(σ + iγ, χ) and L(σ + iγ, ψ) are linearly
independent over R.

Theorem 2 (L–Petridis 2012)

Two Dirichlet L-functions with distinct primitive non-principal
characters attain different values at cT non-trivial zeros of ζ up
to height T , for some positive constant c.
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Remarks

In particular, Theorem 1 implies that the arguments of the
L-functions are distinct

The conditions for the characters in Theorem 1 are very
restrictive

To obtain complex characters need ImL(2σ, χψ) 6= 0

It is difficult to extend Theorem 1 to the critical line
In Theorem 2 we fail to obtain positive proportion (would
prove simple zeros for L!)
Not dependent on RH
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Proof of Theorem 1
Notice z, w ∈ C are L.I. over R iff |zw − zw| > 0.

Fix a prime P , define

A(γ) = B(s, P )(L(s, χ)L(s, ψ)− L(s, χ)L(s, ψ)),

where B(s, P ) is a specific Dirichlet polynomial.
Suppose we know that for a constant c 6= 0,∑

0<γ≤T

A(γ) ∼ cN(T ) and
∑

0<γ≤T

|A(γ)|2 � N(T ),

then ∑
0<γ≤T
A(γ)6=0

1
C-S
≥ |

∑
A(γ)|2∑
|A(γ)|2

� |c|
2N(T )2

N(T )
= |c|2N(T ).
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Proof of Theorem 1 (cont.)

Ideally we would like to just apply Landau’s formula to
L(s, χ)L(s, ψ) at the appropriate points

Series definition not valid! So use approximate functional
equation
Then we can apply (uniform) Landau’s formula
We need the B(s, P ) factor to have the mean value not
being trivially 0
It also takes some effort to prove that the c we get is
nonzero!
The 4th moment is harder to estimate but we only need an
upper bound
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Proof of Theorem 2

Similar to Theorem 1, but we start from

1

2πi

∫
C

ζ ′

ζ
(s)B(s, p)L(s, χ) ds.

The role of Landau’s Formula is replaced by the Modified
Gonek Lemma

The B(s, p) factor is now simpler which makes proving
c 6= 0 easier (so we get complex characters)
A more natural approach, but the analysis is more difficult
(Garunkstis–Kalpokas–Steuding, 2010)



Applications of Landau’s Formula

Proof of Theorem 2

Similar to Theorem 1, but we start from

1

2πi

∫
C

ζ ′

ζ
(s)B(s, p)L(s, χ) ds.

The role of Landau’s Formula is replaced by the Modified
Gonek Lemma
The B(s, p) factor is now simpler which makes proving
c 6= 0 easier (so we get complex characters)

A more natural approach, but the analysis is more difficult
(Garunkstis–Kalpokas–Steuding, 2010)



Applications of Landau’s Formula

Proof of Theorem 2

Similar to Theorem 1, but we start from

1

2πi

∫
C

ζ ′

ζ
(s)B(s, p)L(s, χ) ds.

The role of Landau’s Formula is replaced by the Modified
Gonek Lemma
The B(s, p) factor is now simpler which makes proving
c 6= 0 easier (so we get complex characters)
A more natural approach, but the analysis is more difficult
(Garunkstis–Kalpokas–Steuding, 2010)



Applications of Landau’s Formula

Upper Half-Plane
Let H = {z ∈ C : Im z > 0} and Γ = SL2(Z)

Γ acts on H as Möbius transformations

γz =
az + b

cz + d
, γ =

(
a b
c d

)
∈ Γ.

Then Γ\H is a Riemann surface

−0.5 0.5

f : H −→ C is called an automorphic form if

f(γz) = f(z), for all γ ∈ Γ
(∆ + λ)f = 0, where ∆ is the Laplacian on H
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Spectrum of ∆
Can you hear the shape of a drum?

No!

isospectral 6≡ isometric

λ = s(1− s) with s = 1
2

+ it or 0 ≤ s ≤ 1

Since Γ\H is non-compact ∆ has both a discrete and a
continuous spectrum
Maass cusp forms φn form an orthonormal system of
eigenfunctions of ∆

Eisenstein series:

E(z, s) =
∑

γ∈Γ∞\Γ

(Im(γz))s
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Applications of Landau’s Formula

Prime Geodesics

Classify γ 6= I as elliptic, parabolic, hyperbolic

The isometries on H are Möbius transformations
On H the geodesics are lines and semi-circles perpendicular
to the real axis
Hyperbolic motions correspond to closed geodesics on
Γ\H!

Theorem (Prime Geodesic Theorem)

Let πΓ(x) = #
{
{γ} : N(γ) ≤ x

}
, then πΓ(x) ∼ x

log x
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Applications of Landau’s Formula

Exponential Sum
Let λj = 1

4
+ t2j be the eigenvalues of ∆

For X > 1, define

S(T,X) =
∑
|tj |≤T

X itj

Essential in the proof of Prime Geodesic Theorem
Trivial estimate (Weyl’s Law)

S(T,X) = O(T 2)

Iwaniec (1984)

S(T,X) = O(X11/48+εT ) =⇒ O(x35/48+ε) in PGT

Luo–Sarnak (1995)

S(T,X) = O(X1/8T 5/4(log T )2) =⇒ O(x7/10+ε)
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Applications of Landau’s Formula

Hyperbolic Lattice Counting

Let N(z, w,X) = #{γ ∈ Γ : γz ∈ Bw(cosh−1 X
2

)}

Difficult since no analogue of Gauss’ geometric method!
Define (for smooth, compactly supported f)

Nf (X) =

∫
Γ\H

f(z)N(z, z,X) dµ(z)

Apply pre-trace formula to a mollified version of

χ[0,(X−2)/4](u)

S(T,X) appears when estimating the contribution of the
discrete spectrum
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The Conjecture

Conjecture (Petridis–Risager 2014)

For X > 1,
S(T,X)�ε T

1+εXε.

This implies the best possible error term in PGT O(x3/4+ε)

Also for hyperbolic lattice counting (on average) O(x1/2+ε)
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Landau-type Formula

Let ΛΓ(X) =

{
log(N(p)), if X = N(p)`, ` ∈ N,
0, otherwise.

Theorem 3 (L 2014)

For a fixed X > 1,

S(T,X) =
|F |
π

sin(T logX)

logX
T +

T

π
(X1/2 −X−1/2)−1ΛΓ(X)

+
2T

π
X−1/2Λ(X1/2) +O

(
T

log T

)
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Applications of Landau’s Formula

Proof
By Selberg Trace Formula:

∑
tj>0

h(tj) +
1

4π

∫ ∞
−∞

h(r)
−ϕ′

ϕ

(
1

2
+ ir

)
dr

=
|F |
4π

∫ ∞
−∞

h(r)r tanh(πr) dr

+
∑
p

∞∑
`=1

(
N(p)`/2 −N(p)−`/2

)−1
g(` log p) log p

+
∑
R

∑
0<`<m

(2m sin
π`

m
)−1

∫ ∞
−∞

h(r)
cosh π(1− 2`/m)r

cosh πr
dr

+ trash...



Applications of Landau’s Formula

Proof
By Selberg Trace Formula:

∑
tj>0

h(tj) +
1

4π

∫ ∞
−∞

h(r)
−ϕ′

ϕ

(
1

2
+ ir

)
dr

=
|F |
4π

∫ ∞
−∞

h(r)r tanh(πr) dr

+
∑
p

∞∑
`=1

(
N(p)`/2 −N(p)−`/2

)−1
g(` log p) log p

+
∑
R

∑
0<`<m

(2m sin
π`

m
)−1

∫ ∞
−∞

h(r)
cosh π(1− 2`/m)r

cosh πr
dr

+ trash...



Applications of Landau’s Formula

Proof
By Selberg Trace Formula:

∑
tj>0

h(tj) +
1

4π

∫ ∞
−∞

h(r)
−ϕ′

ϕ

(
1

2
+ ir

)
dr

=
|F |
4π

∫ ∞
−∞

h(r)r tanh(πr) dr

+
∑
p

∞∑
`=1

(
N(p)`/2 −N(p)−`/2

)−1
g(` log p) log p

+
∑
R

∑
0<`<m

(2m sin
π`

m
)−1

∫ ∞
−∞

h(r)
cosh π(1− 2`/m)r

cosh πr
dr

+ trash...



Applications of Landau’s Formula

Proof
By Selberg Trace Formula:

∑
tj>0

h(tj) +
1

4π

∫ ∞
−∞

h(r)
−ϕ′

ϕ

(
1

2
+ ir

)
dr

=
|F |
4π

∫ ∞
−∞

h(r)r tanh(πr) dr

+
∑
p

∞∑
`=1

(
N(p)`/2 −N(p)−`/2

)−1
g(` log p) log p

+
∑
R

∑
0<`<m

(2m sin
π`

m
)−1

∫ ∞
−∞

h(r)
cosh π(1− 2`/m)r

cosh πr
dr

+ trash...



Applications of Landau’s Formula

Proof
By Selberg Trace Formula:

∑
tj>0

h(tj) +
1

4π

∫ ∞
−∞

h(r)
−ϕ′

ϕ

(
1

2
+ ir

)
dr

=
|F |
4π

∫ ∞
−∞

h(r)r tanh(πr) dr

+
∑
p

∞∑
`=1

(
N(p)`/2 −N(p)−`/2

)−1
g(` log p) log p

+
∑
R

∑
0<`<m

(2m sin
π`

m
)−1

∫ ∞
−∞

h(r)
cosh π(1− 2`/m)r

cosh πr
dr

+ trash...
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Proof (cont.)

Set h(r) = (χ[−T,T ] ∗ ψε)(r)(X ir +X−ir)

Balance between smoothing
∑
h(tj) and other error terms

Trickiest term to estimate is the contribution of continuous
spectrum
However, after a suitable change of contour we can use an
argument similar to Landau’s original one
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Remarks (Theorem 3)

We would like an actual Landau formula!
Generalisation to other spaces?
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Kiitos!
ありがとうございます


