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Prime Number Facts
Definition
A positive number p is a prime number if its only positive divisors are 1
and itself.

• 2, 3, 5, 7, 11, 13, . . .

• What about 103?

A prime

• And 1 033?

A prime

• 10 333?

Still a prime. So is
103 333

• However,
1 033 333 = 7×43×3433.

• In fact every number can be
written as a product of primes.

• This representation is
unique.
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How many primes are there?

Theorem (Euclid (ca. 300 BC))
There are infinitely many primes.

Proof.
Suppose, for contradiction, that there are finitely many primes. Thus we
can list all the primes: p1, . . ., pN for some N > 0. Define

Q = p1 . . .pN +1.

Then the remainder of Q divided by any prime in our list is 1, i.e. none of
our primes divide Q. Hence Q must have at least one prime factor not in
the list of primes. This is a contradiction.

• Largest publicly known prime is 243112609−1
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So how do we find them?
1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Sieve of Eratosthenes (ca. 200 BC)
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What else can we say about primes?
1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30
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61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

• Twin primes
• Gaps between primes

• How large?
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How large gaps are there between primes?

Theorem
For any N ∈ N there exists N−1 consecutive numbers that are not
prime.

Proof.
Consider the numbers N!+2, N!+3, . . ., N!+N. Then N!+ i is
divisible by i for i = 2, . . ., N, and hence is not a prime.

In other words, there are abritrarily long gaps between primes.
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Prime Number Facts Recap

• How many of them are there?

• Infinitely many

• How large gaps are there between primes?

• Arbitrarily large

• How many primes up to some number x?
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Primes up to x

Definition
Denote the number of primes up to x by π(x).

x π(x)
1 0
2 1√
2 1

3 2
3.0001 2

13 6
100 25
101 26

1000 168

• Can we find a formula for π(x)?
• Not a smooth function—step function

• Can we find f (x) such that f (n) = π(n) if n
is a prime?

• i.e. Can we approximate π(x) by a smooth
function f (x)?
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• i.e. Can we approximate π(x) by a smooth
function f (x)?
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Gauß (1777–1855)

• Born to a poor family
• Child prodigy

• 1+2+ . . .+100 =?

• Didn’t care about publishing his
results

• Hobby: computing primes
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Gauß’ Answer to Our Question (at the age of 15!)

x π(x) x
π(x)

1 000 168 5.9523
10 000 1 229 8.1367

100 000 9 592 10.4254
1 000 000 78 498 12.7392

10 000 000 664 579 15.0471
100 000 000 5 761 455 17.3567

1 000 000 000 50 847 534 19.6666

4.4731

4.6217

4.6195

4.6025

4.6175

Going from 10n to 10n+2 increases the ratio by ∼ 4.6.
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change in ratio
change in exponent

=
4.6
2

= 2.3

Rules of the Logarithm

• loga x = c ⇐⇒ ac = x
• loga a = 1
• y logx = logxy

• logb x = loga x
loga b

So, for example,

log10 10n = n

log10 10n+2 = n+2.

∆
x

π(x)
= 2.3∆ log10 x

2.3≈ loge 10 = 2.3026 . . .

∆
π(x)

x
= ∆(loge 10log10 x) = ∆ logx

Niko Laaksonen (UCL) PNT March 27, 2012 12 / 31



change in ratio
change in exponent

=
4.6
2

= 2.3

Rules of the Logarithm

• loga x = c ⇐⇒ ac = x
• loga a = 1
• y logx = logxy

• logb x = loga x
loga b

So, for example,

log10 10n = n

log10 10n+2 = n+2.

∆
x

π(x)
= 2.3∆ log10 x

2.3≈ loge 10 = 2.3026 . . .

∆
π(x)

x
= ∆(loge 10log10 x) = ∆ logx

Niko Laaksonen (UCL) PNT March 27, 2012 12 / 31



change in ratio
change in exponent

=
4.6
2

= 2.3

Rules of the Logarithm
• loga x = c ⇐⇒ ac = x

• loga a = 1
• y logx = logxy

• logb x = loga x
loga b

So, for example,

log10 10n = n

log10 10n+2 = n+2.

∆
x

π(x)
= 2.3∆ log10 x

2.3≈ loge 10 = 2.3026 . . .

∆
π(x)

x
= ∆(loge 10log10 x) = ∆ logx

Niko Laaksonen (UCL) PNT March 27, 2012 12 / 31



change in ratio
change in exponent

=
4.6
2

= 2.3

Rules of the Logarithm
• loga x = c ⇐⇒ ac = x
• loga a = 1

• y logx = logxy

• logb x = loga x
loga b

So, for example,

log10 10n = n

log10 10n+2 = n+2.

∆
x

π(x)
= 2.3∆ log10 x

2.3≈ loge 10 = 2.3026 . . .

∆
π(x)

x
= ∆(loge 10log10 x) = ∆ logx

Niko Laaksonen (UCL) PNT March 27, 2012 12 / 31



change in ratio
change in exponent

=
4.6
2

= 2.3

Rules of the Logarithm
• loga x = c ⇐⇒ ac = x
• loga a = 1
• y logx = logxy

• logb x = loga x
loga b

So, for example,

log10 10n = n

log10 10n+2 = n+2.

∆
x

π(x)
= 2.3∆ log10 x

2.3≈ loge 10 = 2.3026 . . .

∆
π(x)

x
= ∆(loge 10log10 x) = ∆ logx

Niko Laaksonen (UCL) PNT March 27, 2012 12 / 31



change in ratio
change in exponent

=
4.6
2

= 2.3

Rules of the Logarithm
• loga x = c ⇐⇒ ac = x
• loga a = 1
• y logx = logxy

• logb x = loga x
loga b

So, for example,

log10 10n = n

log10 10n+2 = n+2.

∆
x

π(x)
= 2.3∆ log10 x

2.3≈ loge 10 = 2.3026 . . .

∆
π(x)

x
= ∆(loge 10log10 x) = ∆ logx

Niko Laaksonen (UCL) PNT March 27, 2012 12 / 31



change in ratio
change in exponent

=
4.6
2

= 2.3

Rules of the Logarithm
• loga x = c ⇐⇒ ac = x
• loga a = 1
• y logx = logxy

• logb x = loga x
loga b

So, for example,

log10 10n = n

log10 10n+2 = n+2.

∆
x

π(x)
= 2.3∆ log10 x

2.3≈ loge 10 = 2.3026 . . .

∆
π(x)

x
= ∆(loge 10log10 x) = ∆ logx

Niko Laaksonen (UCL) PNT March 27, 2012 12 / 31



change in ratio
change in exponent

=
4.6
2

= 2.3

Rules of the Logarithm
• loga x = c ⇐⇒ ac = x
• loga a = 1
• y logx = logxy

• logb x = loga x
loga b

So, for example,

log10 10n = n

log10 10n+2 = n+2.

∆
x

π(x)
= 2.3∆ log10 x

2.3≈ loge 10 = 2.3026 . . .

∆
π(x)

x
= ∆(loge 10log10 x) = ∆ logx

Niko Laaksonen (UCL) PNT March 27, 2012 12 / 31



change in ratio
change in exponent

=
4.6
2

= 2.3

Rules of the Logarithm
• loga x = c ⇐⇒ ac = x
• loga a = 1
• y logx = logxy

• logb x = loga x
loga b

So, for example,

log10 10n = n

log10 10n+2 = n+2.

∆
x

π(x)
= 2.3∆ log10 x

2.3≈ loge 10 = 2.3026 . . .

∆
π(x)

x
= ∆(loge 10log10 x) = ∆ logx

Niko Laaksonen (UCL) PNT March 27, 2012 12 / 31



change in ratio
change in exponent

=
4.6
2

= 2.3

Rules of the Logarithm
• loga x = c ⇐⇒ ac = x
• loga a = 1
• y logx = logxy

• logb x = loga x
loga b

So, for example,

log10 10n = n

log10 10n+2 = n+2.

∆
x

π(x)
= 2.3∆ log10 x

2.3≈ loge 10 = 2.3026 . . .

∆
π(x)

x
= ∆(loge 10log10 x) = ∆ logx

Niko Laaksonen (UCL) PNT March 27, 2012 12 / 31



change in ratio
change in exponent

=
4.6
2

= 2.3

Rules of the Logarithm
• loga x = c ⇐⇒ ac = x
• loga a = 1
• y logx = logxy

• logb x = loga x
loga b

So, for example,

log10 10n = n

log10 10n+2 = n+2.

∆
x

π(x)
= 2.3∆ log10 x

2.3≈ loge 10 = 2.3026 . . .

∆
π(x)

x
= ∆(loge 10log10 x) = ∆ logx

Niko Laaksonen (UCL) PNT March 27, 2012 12 / 31



So let’s look at
logx
x/π(x)

:

x π(x) x
π(x)

logx
x/π(x)

1 000 168 5.9523 1.1605
10 000 1 229 8.1367 1.1319

100 000 9 592 10.4254 1.1043
1 000 000 78 498 12.7392 1.0844

10 000 000 664 579 15.0471 1.0711
100 000 000 5 761 455 17.3567 1.0613

1 000 000 000 50 847 534 19.6666 1.0537

Rearrange:
logx
x/π(x)

=
π(x)
x/logx

The ratio gets closer to 1 as x gets bigger. Great!
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Gauß’ Way
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Gauß’ Guess
Gauß thus made the following conjecture:

lim
x→∞

π(x) logx
x

= 1
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Quest for the Proof

• Gauß: failed

• Legendre: failed

• One step closer: Riemann (1859) and Dirichlet

• First proof independently by Jacques Hadamard and Charles-Jean
de la Vallée Poussin (1896)

• Since then many versions have been discovered:

• Newman’s Short Proof (1980)
• Erdős and Selberg’s Elementary Proof (1949)

Niko Laaksonen (UCL) PNT March 27, 2012 16 / 31



Quest for the Proof

• Gauß: failed

• Legendre: failed

• One step closer: Riemann (1859) and Dirichlet

• First proof independently by Jacques Hadamard and Charles-Jean
de la Vallée Poussin (1896)

• Since then many versions have been discovered:

• Newman’s Short Proof (1980)
• Erdős and Selberg’s Elementary Proof (1949)

Niko Laaksonen (UCL) PNT March 27, 2012 16 / 31



Quest for the Proof

• Gauß: failed

• Legendre: failed

• One step closer: Riemann (1859) and Dirichlet

• First proof independently by Jacques Hadamard and Charles-Jean
de la Vallée Poussin (1896)

• Since then many versions have been discovered:

• Newman’s Short Proof (1980)
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Questions?

Let’s have a break.

Niko Laaksonen (UCL) PNT March 27, 2012 17 / 31



Questions? Let’s have a break.

Niko Laaksonen (UCL) PNT March 27, 2012 17 / 31



Revision of Series
Harmonic Series

Diverges:

∞

∑
i=1

1
n

= 1+
1
2
+

1
3
+

1
4
+

1
5
+

1
6
+

1
7
+

1
8
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= 1+
1
2
+

(
1
3
+

1
4
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+

(
1
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+
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1
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+
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+
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+
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+
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+
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+
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+
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Revision of Series II

Geometric Series
∞

∑
n=0

xn, |x|< 1

Denote the above series by S, then

S = 1+ x+ x2 + x3 + x4 + . . .

xS = x+ x2 + x3 + x4 + . . .

S(1− x) = 1

S =
1

1− x
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A Taste of Analysis
Let’s go back to infinitude of primes. Euler gave the following proof:

There are infinitely many primes.
Suppose there are only finitely many primes p1, . . ., pN , and consider

N

∏
i=1

1
1− 1

pi

=
N

∏
i=1

(
1+

1
pi
+

1
p2

i
+ . . .

)
.

By unique factorization every positive number n appears exactly once in
the expansion on the right. Thus,

N

∏
i=1

1
1− 1

pi

≥
∞

∑
n=1

1
n
.

However, the RHS is divergent while the product is finite. This is a
contradiction.
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We will prove the following

Chebychev’s Upper Bound (1850)
π(x) logx

x
≤ A

for some positive constant A > 1.

Let’s write π(x) as
π(x) = ∑

p≤x
1.

Chebychev considered
θ(x) = ∑

p≤x
logp,

where the sum is taken over all primes less than x.
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Lemma

θ(n)≤ n log4

Proof of Lemma

22n+1 = (1+1)2n+1 =

(
2n+1

0

)
+

(
2n+1

1

)
+ . . .+

(
2n+1
2n+1

)
≥
(

2n+1
n

)
+

(
2n+1
n+1

)
= 2

(
2n+1

n

)
since

(2n+1
n

)
=
(2n+1

n+1

)
(exercise!).
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Proof of Lemma Continued
We had

n log4≥ log
(

2n+1
n

)
.

Let pk, pk+1, . . ., pt be all primes between n+2 and 2n+1, then

θ(2n+1)−θ(n+1) = ∑
n+2≤p≤2n+1

logp = log(pkpk+1 . . .pt).

But
(2n+1

n

)
= (2n+1)·2n...·(n+2)

n! so all of pk, . . ., pm divide
(2n+1

n

)
. Thus

their product is less than
(2n+1

n

)
. Hence,

θ(2n+1)−θ(n+1)≤ log
(

2n+1
n

)
≤ n log4.
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Proof of Lemma Finished.
We’ll finish by induction.

Suppose that

θ(n)≤ n log4.

If n+1 is not a prime then

θ(n+1) = θ(n)≤ n log4≤ (n+1) log4.

Otherwise n is odd so we can write n = 2m+1.Then

θ(n) = θ(2m+1)≤ m log4+θ(m+1)
≤ m log4+(m+1) log4
= (2m+1) log4 = n log4.
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Proof of Chebychev’s Bound
Recall that we wish to prove that π(x) logx

x ≤ A.

Proof.
By Lemma

∑√
x<p≤x

logp≤ x log4.

So (
π(x)−π(

√
x)
)

log
√

x≤ x log4.

This yields (log
√

x = 1
2 logx)

π(x)≤ 2x log4
logx

+π(
√

x)≤ 2x log4
logx

+
√

x.

But
√

x is much smaller than x
logx .
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Full Proof

• Requires complex analytic methods (Riemann)

• Define the function ζ(s) =
∞

∑
n=1

1
ns

• Recall the product we had ∏
p≤R

1
1− 1

p

• Can show that

ζ(s) = ∏
p

1
1− 1

ps

• Riemann considered this as a function of a complex variable

• PNT relies on showing that ζ(1+ it) 6= 0 where i =
√
−1 and t 6= 0
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Error in PNT

0 200 400 600 800 1000

50

100

150

x

logHxL

ΠHxL

• Not that good numerical approximation

• Gauß noticed this too. His answer: Li(x) =
∫ x

2

1
log t

dt

• PNT ⇐⇒ lim
x→∞

π(x)
Li(x)

= 1
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What’s Left?

• Obtaining the best possible approximation in PNT

• Equivalent to the Riemann Hypothesis (Millenium Problem)

• Define π2(x) to be the number of twin primes up to x

• Prove PNT with π2
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Gauß’ Puzzle

1+2+ . . .+99+100

+100+99+ . . .+2+1

= 101+101+ . . .101+101

=
1
2
·100 ·101 = 50 ·101 = 5050

Thanks!

Any questions?
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