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Value distribution theory is the study of how often a complex function assumes different
values. By the Fundamental Theorem of Algebra we know that any polynomial over C
is completely determined by its zeros up to a constant multiple. But what can we say
about general entire functions? How many zeros must, or can, these functions have?
How many times can two meromorphic functions assume the same value on the same
set? How does Nevanlinna fit into all this? If you wish to hear the answers to these
questions come and join us on the 26th of October.

“Rolf Nevanlinna, creator of the modern theory of meromorphic functions” -Hayman, W.K.
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With this talk I’m hoping to introduce some concepts that were just out of reach in
the first complex analysis course at UCL. Eventually my goal is to naturally end up at a
point where, in order to make further progress, it is essential to introduce the theory of
Nevanlinna. No previous knowledge is assumed from the audience, but some familiarity with
basic complex analysis can be helpful.

1 Polynomials

Value distribution theory tries to answer the question of how many times does a certain
function take different complex values, and what is the distribution — or density — of these
points. We begin by looking at the simple case of a polynomial f : C→ C of degree n. This
well serve to introduce the ideas of the theory and to suggest parallels to a wider class of
functions.

By the Fundamental Theorem of Algebra f has exactly n zeros counted with multiplicities.
In other words, the function f takes the value 0 exactly n times. On the other hand, we may
ask how many times must f take any other complex value, say, a ∈ C.

In the case of polynomials this is easy to see. Consider the polynomial f −a which is also
of degree n. Then this polynomial takes the value 0 exactly n times. Thus f takes the value
a exactly n times (with multiplicities). This is clearly not true for a general real polynomial!

There are two things that this observation allows us to deduce. Letting a1, . . . , an be the
zeroes of f , we can write f(z) = c(z−a1) . . . (z−an) for some c ∈ C. The crux of this is that
any two complex polynomials with the same roots can only differ by a constant multiple.

We also have that
lim
|z|→∞

f(z)
zn

= c.

More precisely, by theMaximum modulus principle we know that the maximum value attained
by f on a disc of radius R centred at the origin lies on the boundary. So we obtain the
following statement about the growth of f .

sup
|z|≤R
|f(z)| = O(Rn) as R→∞.
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The converse is true as well. That is, if the maximum modulus of a function grows as rn

then it is a polynomial.

We can see the interplay of three distinct concepts here: the distribution of the zeros of
a function, the growth of such functions, and to what extent is the function determined by
these zeros.

2 Entire Functions

Recall from Complex Analysis, MATH2101, that an entire function is an analytic function f
on all of the complex plane. From the same course you might remember a result for the
minimal growth condition for entire functions, namely, Liouville’s Theorem. This says that
any bounded entire function is a constant. Again, in light of the maximum modulus principle,
it is enough to require that the maximum modulus of a function on a circle doesn’t grow
bigger as we move away from the origin.

The obvious problem, when trying to generalise the Fundamental Theorem of Algebra,
comes from the fact that entire functions can have infinitely many zeros making the naive
product of linear factors divergent. In fact, entire functions can take any value infinitely
many times. We can be even more precise than this. The following is a theorem by a French
mathematician Charles Picard given in 1879.

Picard’s Theorem Any non-constant entire function can omit at most one finite value,
and takes on every other complex value infinitely many times.

The original proof of this uses modular functions, but we will later see how it actually
follows as a simple consequence of Nevanlinna theory.

Let us now look at the specific example f(z) = ez. We know that f is an entire function,
and that it never takes the value zero. Hence, by Picard’s theorem f must attain every other
complex value infinitely many times. This presents another problem to us: a non-constant
entire function may not have any zeros at all! Thus it makes sense to suspect that two entire
functions with the same zeroes can not only differ by a constant, but also by a multiple of
some sort of exponential factor. A very explicit formulation was given by Weierstraß in
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1876, which assumes a form similar to the Fundamental Theorem of Algebra.

Theorem Let {an} be a sequence of nonzero complex numbers such that lim|an| = ∞.
Then any entire function which vanishes exactly at each an and has a zero of order m at the
origin is of the form

f(z) = eg(z)zm
∞∏
n=1

En

(
z

an

)
,

where g is entire and the canonical factors En are defined by

Ek(z) = (1− z)ez+z2/2+...+zk/k.

The reason for introducing these canonical factors is to make our infinite product converge.
It remains to investigate the growth of such functions in relation to the distribution of zeros.
As was said before the exponential factor we had to introduce gives us a little trouble. It can
arbitrarily affect the rate of growth of f without introducing any additional zeros. It turns
out that if we limit ourselves to entire functions, which maximum modulus doesn’t grow too
fast, we can ensure that g is a polynomial. The following definition makes this distinction
more precise.

Definition Let f be an entire function. Then the order of growth of f is given by

ρf = inf{ρ > 0 : |f(z)| ≤ AeB|z|
ρ},

where A,B > 0 are constants.

Jacques Hadamard showed that for a function of order ρ the degree of the polynomial
in the exponent is at most ρ. Moreover, if we assume that f(0) 6= 0 then

log|f(0)| = 1
2π

∫ 2π

0
log|f(Reiθ)| dθ −

n∑
k=1

log
∣∣∣∣Rak

∣∣∣∣ , (1)

where a1, . . . , an are the zeros of f inside |z| < R. Equation (1) is called Jensen’s formula.
It allows us to give an estimate for the distribution of zeros of f . For this, we need to note
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that
n∑
k=1

log
∣∣∣∣Rak

∣∣∣∣ =
n∑
k=1

∫ R

|ak|

1
t
dt

=
n∑
k=1

∫ R

0
χk(t)

1
t
dt

=
∫ R

0

1
t

n∑
k=1

χk(t) dt

=
∫ R

0

n(t, 0)
t

dt,

where n(r, 0) is the number of zeros of f inside the open disc of radius r centred at the
origin, and χk(r) is 1 − (the characteristic function of the disk r ≤ |ak|). Substituting this
into Jensen’s Formula yields

∫ r

0
n(t, 0)dt

t
= 1

2π

∫ 2π

0
log|f(Reiθ)| dθ − log|f(0)|. (2)

In particular if f is of finite order of growth the above formula allows us to give an asymptotic
upper bound for the number of zeros: n(r, 0) = O(rρ). This was improved upon by Borel
who showed that

lim sup
r→∞

log n(r, a)
log r = ρ

except at most for one value a ∈ C for which the earlier inequality holds instead (think about
ez for example).

So we have seen that even though entire functions aren’t as easy to deal with as polyno-
mials it is still possible to overcome these difficulties. Moreover, Borel’s result shows that all
entire functions of finite order have their value distribution completely determined by their
order, and that the distribution is same for each value a ∈ C with at most one exception.
We shall now shift our focus to meromorphic functions, which will also be the starting point
of Nevanlinna theory.

3 Meromorphic Functions

Definition Let f be a function on an open set Ω ⊆ C. We say that f is meromorphic
if there exists a sequence of points {zn}∞n=0 in C such that {zn} has no limit points in Ω, and
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(i) f is analytic in Ω \ {z0, z1, . . .}, and

(ii) f has poles at the points z0, z1, z2, . . .

It is possible to show that any meromorphic function is the quotient of two entire functions,
which is sometimes taken as the definition.

Now things start getting more complicated. It no longer makes sense to measure the
growth of a function by calculating the maximum modulus, since a meromorphic function
can attain the value∞ on a disc of finite radius. We can say something about these functions,
though. For example, Picard’s Theorem generalises easily. Let f be a meromorphic function
which omits a finite value a. Then 1

f−a is an entire function, which by Picard’s Theorem can
omit at most one value. Hence any meromorphic function can omit at most two finite values.

Moreover, since we can write any meromorphic function as a quotient of two entire func-
tions, one might be lead to suspect that it is reasonable to attempt to measure the growth
of f by studying the growth of the numerator and the denominator separately. This was
the idea Borel had, and he managed to generalise some of the earlier results to meromorphic
functions by defining the order of such f to be the maximum of the order of the denominator
and the numerator. It however became apparent that any further development of these ideas
would be difficult from this point of view. (Lehto, 1982)

4 Nevanlinna Theory

It was time for Rolf Nevanlinna to revolutionise the study of meromorphic functions. He
did this through a series of publications in 1922–1925 at the age of 26. His key idea was to
use Jensen’s Formula with a slight modification.

Define the real function log+(x) = max(log x, 0). Nevanlinna then used this function to
construct three real-valued functions to measure the behaviour of f . In view of (1) he defined

m(r, f) = 1
2π

∫ 2π

0
log+|f(reiθ)| dθ.
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This is called the (mean) proximity function which essentially measures how big f is
on the circle |z| = r. Furthermore, denote by n(t, f) the number of poles of f in |z| ≤ t,
counting multiplicities, and let us assume that f(0) 6=∞ (we are still assuming that f(0) 6= 0,
too). Define

N(r, f) =
∫ r

0

n(t, f)
t

dt,

which is Nevanlinna’s counting function. It clearly counts the logarithmic average of the
poles of f inside the disk |z| < r.

We now rewrite Jensen’s Formula in terms of log+. Notice that for x > 0 it is true that
log x = log+ x− log+ 1

x
. Thus

1
2π

∫ 2π

0
log|f(Reiθ)| dθ = 1

2π

∫ 2π

0
log+|f(Reiθ)| dθ − 1

2π

∫ 2π

0
log+ 1

|f(Reiθ)| dθ

= m(R, f)−m
(
R,

1
f

)
.

In fact, for Jensen’s formula to hold for meromorphic functions we need to include a similar
sum to that of the one over zeros to the equation, but taken over the poles instead. Anyway,
with this in mind, and recalling how we converted the sum in question into an integral, we
can finally rewrite Formula (1) as

log|f(0)| = m(R, f)−m
(
R,

1
f

)
−N

(
R,

1
f

)
+N(R, f). (3)

First of all, in the spirit of the discussion so far, while m(R, f) measures the mean size of f on
the circle, m

(
R, 1

f

)
looks at the same aspect from another point of view by measuring how

close f is to 0 on the circle on average. Similarly for N(r, f) and N
(
R, 1

f

)
. The important

thing to notice here is that the left-hand side is constant even when R → ∞. Nevanlinna
realised that this would allow him to effectively measure the growth of f . He defined the
(Nevanlinna) characteristic function

T (r, f) = m(r, f) +N(r, f),

which can be used to rewrite Equation (3) in a very compact form

T

(
R,

1
f

)
= T (R, f)− log|f(0)|. (4)

This realisation has been described by Ahlfors (1976), a student of Nevanlinna, as the point
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when Nevanlinna theory was born.

The function T is sometimes — originally by Nevanlinna as well — referred to as the
affinity of f for ∞, or in other words “a measure of how much f likes ∞” (substitute ∞
with 0 for 1

f
, or with a for 1

f−a). The reason for this terminology becomes apparent from
the deduction Nevanlinna made from Equation (4). This is what he referred to as the The
First Main Theorem

T

(
R,

1
f

)
= T (R, f) +O(1), (5)

where O(1) is bounded. This is really just a restatement of (4), because log|f(0)| is a finite
constant. The implications, however, are huge. What Theorem (5) says is that f likes the
value ∞ as much as 0. It is actually possible to generalise this for any a ∈ C. Moreover, if
the value of the characteristic function is asymptotically unbounded (which is the case with
all interesting functions) then if f has many zeros — that is, N(r, 1/f) grows fast — then f
has to spend a lot of time away from the value 0 as m(r, 1/f) must be small. This is because
the characteristic function must behave in essentially the same way for all values a ∈ C by
the First Main Theorem. Let us look at a concrete example to illustrate this point.

Again, let f(z) = ez. We can now say much more about f than what was possible with
Picard’s theorem. As said before, f never attains the value 0 nor the value ∞ as it is entire.
Thus N(r, ez) = N(r, e−z) = 0 ∀r, and by the argument above m(r, ez) and m(r, e−z) have to
compensate. And this is indeed true! If you recall the familiar graph of the real exponential
function you will notice how it is very close to 0 to the left of the y-axis and grows very
quickly to the right. Now all we need to do is to notice that the real exponential function
gives the magnitude of the complex exponential, because |ez| = eRe z, and we can deduce the
same result for all z ∈ C. Hence, in fact, f is close to 0 on the whole left half-plane, and
close to ∞ on the right one exactly as predicted by Nevanlinna theory!

Having gone through all the trouble of developing the theory for meromorphic functions,
it would be a shame not to give an example. So here we go. Possibly the simplest class of
meromorphic functions is the rational functions, that is, the functions which are quotients
of two complex polynomials. Let f(z) = P (z)

Q(z) , where P (0) 6= 0 6= Q(0), and degP = n,
degQ = m. We first consider the case m ≥ n. Then if we pick a disc of radius r0 containing
the pole furthest away from origin (which we can do since all the poles are at finite points,
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and there is a finite amount of them on all of C), we have n(r, f) = m for r ≥ r0. Hence

N(r, f) =
∫ r0

0

n(t, f)
t

dt+
∫ r

r0

m

t
dt

= m(log r − log r0) +O(1)

= m log r +O(1)

as the first integral is clearly bounded, and n(0, f) = 0. Recall from Section 1 that the
growth of a polynomial is dominated by the highest-order term. Hence for any ε > 0 there
exists an r0 > 0 such that for all r = |z| > r0 we have

(1− ε)|an|rn ≤ |P (z)| ≤ (1 + ε)|an|rn,

where an is the leading coefficient of P . So for r ≥ r0 we can write |P (z)| = |an|rn(1 + o(1))
and |Q(z)| = |bm|rm(1 + o(1)), where g = o(h) means limx→∞

g(x)
h(x) = 0. But then

log|f(z)| = log|an|+ n log r + log|1 + o(1)| − log|bm| −m log r − log|1 + o(1)|,

and as m ≥ n we find that log+|f | = O(1) and it follows that m(r, f) = O(1). We can now
calculate the characteristic function of f , which clearly is

T (r, f) = m log r +O(1) = O(log r).

In the case m < n we can no longer control the growth of f in the same manner, but by
the First Main Theorem and the previous case we get

T (r, f) = T

(
r,

1
f

)
+O(1) = n log r +O(1) = O(log r).

Thus if f is a rational function it satisfies the growth condition T (r, f) = O(log r). Inter-
estingly, the converse is true as well. That is, any meromorphic function f which grows
as T (r, f) = O(log r) is a rational function. So whereas the polynomials are characterised
by “polynomial growth” of the maximum modulus, the rational functions are exactly the
meromorphic functions with logarithmic growth (in the sense of Nevanlinna’s characteristic)!

Having successfully devised a way to measure the value distribution of meromorphic
functions, Nevanlinna looked more closely into his characteristic function. He wanted to
understand the intrinsic relation between the terms m and N in the definition of T . It
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turned out that, in general, m is much smaller than N . In the end this idea took the
following form.

Second Main Theorem Let f be a meromorphic function on C and let a1, . . . , aq be
distinct finite or infinite numbers with q > 2. Then

(q − 2)T (r, f) ≤
q∑
i=1

N(r, ai) + small terms.

An important special case is given by q = 3, which is where Nevanlinna arrived first as
well. We then have

T (r, f) ≤ N(r, a) +N(r, b) +N(r, c) + small terms.

Let us now give a short proof of Picard’s Theorem in the case of meromorphic functions.
Assume for contradiction that a meromorphic function f omits at least three distinct values
a, b, and c. Then N(r, a) = N(r, b) = N(r, c) = 0 for all r, which is a contradiction since T
is unbounded.

5 Applications

The main unsolved problem in pure Nevanlinna theory seems to be estimating the error term
in the Second Main Theorem. Not only is it an interesting problem on it’s own, mathemati-
cians (Vojta, Lang, Osgood, etc.) realised during the 20th century that good estimates of
the error term have consequences in other subjects. In general, the true power of Nevanlinna
theory becomes clear when one looks at the multitude of its applications. Here I would like
to mention a few of those, which both are still subject to ongoing research.

Let us say that two meromorphic functions f and g share a value a ∈ C if {z : f(z) = a} =
{z : g(z) = a}. It is then possible to prove using Nevanlinna theory that if two meromorphic
functions f and g share five distinct values then either f ≡ g or they are both constant.
Notice that, for example, ez and e−z share the values 0, 1, −1, and ∞. Thus the number 5
in the theorem is strict.Charak (2009) lists sources related to this topic.
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Another application, which goes much deeper, is the connection between Nevanlinna
theory and Diophantine approximation. Paul Vojta expressed in great detail the analogy
between Nevanlinna theory and Diophantine approximation in 1987. He showed that many of
the functions of Nevanlinna theory have corresponding functions or quantities in Diophantine
approximation, and moreover that there existed theorems analogous to the First and Second
Main Theorems. If you wish to know more about this it is suggested to have a look at Vojta’s
notes on the subject given in the references as well as Cherry and Ye (2001).
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