Applications of Landau's Formula

Niko Laaksonen

UCL

February 16th 2015

Landau and his work

- Landau and his work
- Application to Dirichlet L-functions

- Landau and his work
- Application to Dirichlet *L*-functions
- Automorphic forms

- Landau and his work
- Application to Dirichlet L-functions
- Automorphic forms
- Hyperbolic Landau-type formula

"Number theory is useful, since one can graduate with it."

"Number theory is useful, since one can graduate with it."

Born in Berlin to a Jewish family

"Number theory is useful, since one can graduate with it."

Born in Berlin to a Jewish familyPNT & Prime Ideal Theorem

"Number theory is useful, since one can graduate with it."

- Born in Berlin to a Jewish family
- PNT & Prime Ideal Theorem
- Dismissal from Göttingen

Landau's Formula

From Über die Nullstellen der Zetafunktion (1911):

Theorem (Landau's Formula)

For a fixed x > 1,

$$\sum_{0 < \gamma \le T} x^{\rho} = -\frac{T}{2\pi} \Lambda(x) + O(\log T).$$

Landau's Formula

From Über die Nullstellen der Zetafunktion (1911):

Theorem (Landau's Formula)

For a fixed x > 1,

$$\sum_{0 < \gamma < T} x^{\rho} = -\frac{T}{2\pi} \Lambda(x) + O(\log T).$$

Here $\rho = \beta + i\gamma$ are the nontrivial zeros of ζ .

Landau's Formula

From Über die Nullstellen der Zetafunktion (1911):

Theorem (Landau's Formula)

For a fixed x > 1,

$$\sum_{0 < \gamma \le T} x^{\rho} = -\frac{T}{2\pi} \Lambda(x) + O(\log T).$$

Here $\rho = \beta + i\gamma$ are the nontrivial zeros of ζ . The von Mangoldt function $\Lambda(x) = \begin{cases} \log p, & \text{if } x = p^n, \\ 0, & \text{otherwise.} \end{cases}$

Theorem (Gonek–Landau Formula (1993))

Let x, T > 1. Then

$$\sum_{0 < \gamma \le T} x^{\rho} = -\frac{T}{2\pi} \Lambda(x)$$

Theorem (Gonek–Landau Formula (1993))

Let x, T > 1. Then

$$\sum_{0 < \gamma \le T} x^{\rho} = -\frac{T}{2\pi} \Lambda(x) + O(x \log 2xT \log \log 3x)$$

$$+O\left(\log x \min\left(T, \frac{x}{\langle x \rangle}\right)\right) + O\left(\log 2T \min\left(T, \frac{1}{\log x}\right)\right),$$

where $\langle x \rangle$ denotes the distance from x to the nearest prime power other than x itself.

Theorem (Gonek–Landau Formula (1993))

Let x, T > 1. Then

$$\sum_{0 < \gamma \le T} x^{\rho} = -\frac{T}{2\pi} \Lambda(x) + O(x \log 2xT \log \log 3x)$$

$$+O\left(\log x \min\left(T, \frac{x}{\langle x \rangle}\right)\right) + O\left(\log 2T \min\left(T, \frac{1}{\log x}\right)\right),$$

where $\langle x \rangle$ denotes the distance from x to the nearest prime power other than x itself.

This is uniform in x!

Results of Gonek

Corollary 1 (Gonek)

Under the RH, for large T and α real with $|\alpha| \leq \frac{1}{2\pi} \log T$, we have

$$\sum_{0<\gamma\leq T} |\zeta(\frac{1}{2} + i(\gamma + 2\pi\alpha/\log T))|^2 = \left(1 - \left(\frac{\sin\pi\alpha}{\pi\alpha}\right)^2\right) \frac{T}{2\pi} \log^2 T + O\left(T\log^{7/4}T\right).$$

Results of Gonek II

Corollary 2 (Gonek)

Assume the RH and fix $0 < \alpha < 1$. Then as $T \to \infty$

$$\sum_{0 < \gamma, \gamma' \le T} \left(\frac{\sin(\frac{\alpha}{2}(\gamma - \gamma')\log T)}{\frac{\alpha}{2}(\gamma - \gamma')\log T} \right)^2 \sim \left(\frac{1}{\alpha} + \frac{\alpha}{3} \right) \frac{T}{2\pi} \log T.$$

Value Distribution of $L(s, \chi)$

• Fujii (1976): A positive proportion of zeros of $L(s,\psi)L(s,\chi)$ are distinct.

Value Distribution of $L(s, \chi)$

Fujii (1976): A positive proportion of zeros of $L(s, \psi)L(s, \chi)$ are distinct.

Grand Simplicity Hypothesis (Wintner, Hooley, Montgomery) $\{\gamma : L(\frac{1}{2} + i\gamma, \chi) = 0, \chi \text{ primitive}\}\$ is linearly independent over \mathbb{Q} .

Value Distribution of
$$L(s,\chi)$$

Fujii (1976): A positive proportion of zeros of $L(s, \psi)L(s, \chi)$ are distinct.

Grand Simplicity Hypothesis (Wintner, Hooley, Montgomery) $\{\gamma : L(\frac{1}{2} + i\gamma, \chi) = 0, \chi \text{ primitive}\}$ is linearly independent over \mathbb{Q} .

R. Murty and K. Murty (1994): If $F, G \in \mathcal{S}$ then

$$|Z_F(T)\Delta Z_G(T)| = o(T) \implies F = G,$$

where $Z_F(T)$ is the set of zeros of F(s) in $\operatorname{Re}(s) \ge 1/2$, $|\operatorname{Im}(s) \le T$, Δ is the symmetric difference.

Theorem 1 (L–Petridis 2011)

Assume the RH.

Theorem 1 (L-Petridis 2011)

Assume the RH. Let χ , ψ be real

Theorem 1 (L-Petridis 2011)

Assume the RH. Let χ , ψ be real, primitive

Theorem 1 (L–Petridis 2011)

Assume the RH. Let χ , ψ be real, primitive and non-principal characters with distinct prime moduli q and ℓ .

Theorem 1 (L–Petridis 2011)

Assume the RH. Let χ , ψ be real, primitive and non-principal characters with distinct prime moduli q and ℓ . Fix $\sigma \in (\frac{1}{2}, 1)$.

Theorem 1 (L–Petridis 2011)

Assume the RH. Let χ , ψ be real, primitive and non-principal characters with distinct prime moduli q and ℓ . Fix $\sigma \in (\frac{1}{2}, 1)$. Then, for a positive proportion of the nontrivial zeros of ζ with $\gamma > 0$, the values of $L(\sigma + i\gamma, \chi)$ and $L(\sigma + i\gamma, \psi)$ are linearly independent over \mathbb{R} .

Theorem 1 (L–Petridis 2011)

Assume the RH. Let χ , ψ be real, primitive and non-principal characters with distinct prime moduli q and ℓ . Fix $\sigma \in (\frac{1}{2}, 1)$. Then, for a positive proportion of the nontrivial zeros of ζ with $\gamma > 0$, the values of $L(\sigma + i\gamma, \chi)$ and $L(\sigma + i\gamma, \psi)$ are linearly independent over \mathbb{R} .

Theorem 1 (L–Petridis 2011)

Assume the RH. Let χ , ψ be real, primitive and non-principal characters with distinct prime moduli q and ℓ . Fix $\sigma \in (\frac{1}{2}, 1)$. Then, for a positive proportion of the nontrivial zeros of ζ with $\gamma > 0$, the values of $L(\sigma + i\gamma, \chi)$ and $L(\sigma + i\gamma, \psi)$ are linearly independent over \mathbb{R} .

Theorem 1 (L–Petridis 2011)

Assume the RH. Let χ , ψ be real, primitive and non-principal characters with distinct prime moduli q and ℓ . Fix $\sigma \in (\frac{1}{2}, 1)$. Then, for a positive proportion of the nontrivial zeros of ζ with $\gamma > 0$, the values of $L(\sigma + i\gamma, \chi)$ and $L(\sigma + i\gamma, \psi)$ are linearly independent over \mathbb{R} .

Theorem 2 (L–Petridis 2012)

Two Dirichlet L-functions with distinct primitive non-principal characters attain different values at cT non-trivial zeros of ζ up to height T, for some positive constant c.

 In particular, Theorem 1 implies that the arguments of the L-functions are distinct

- In particular, Theorem 1 implies that the arguments of the L-functions are distinct
- The conditions for the characters in Theorem 1 are very restrictive

- In particular, Theorem 1 implies that the arguments of the L-functions are distinct
- The conditions for the characters in Theorem 1 are very restrictive
 - To obtain complex characters need $\operatorname{Im} L(2\sigma, \chi \overline{\psi}) \neq 0$

- In particular, Theorem 1 implies that the arguments of the L-functions are distinct
- The conditions for the characters in Theorem 1 are very restrictive
 - To obtain complex characters need $\operatorname{Im} L(2\sigma, \chi \overline{\psi}) \neq 0$
- It is difficult to extend Theorem 1 to the critical line

- In particular, Theorem 1 implies that the arguments of the L-functions are distinct
- The conditions for the characters in Theorem 1 are very restrictive
 - To obtain complex characters need $\operatorname{Im} L(2\sigma, \chi \overline{\psi}) \neq 0$
- It is difficult to extend Theorem 1 to the critical line
- In Theorem 2 we fail to obtain positive proportion (would prove simple zeros for L!)

- In particular, Theorem 1 implies that the arguments of the L-functions are distinct
- The conditions for the characters in Theorem 1 are very restrictive
 - To obtain complex characters need $\operatorname{Im} L(2\sigma, \chi \overline{\psi}) \neq 0$
- It is difficult to extend Theorem 1 to the critical line
- In Theorem 2 we fail to obtain positive proportion (would prove simple zeros for L!)
- Not dependent on RH
Notice z, $w \in \mathbb{C}$ are L.I. over \mathbb{R} iff $|z\overline{w} - \overline{z}w| > 0$.

Notice $z, w \in \mathbb{C}$ are L.I. over \mathbb{R} iff $|z\overline{w} - \overline{z}w| > 0$. Fix a prime P, define

$$A(\gamma) = B(s, P)(L(s, \chi)\overline{L(s, \psi)} - \overline{L(s, \chi)}L(s, \psi)),$$

where B(s, P) is a specific Dirichlet polynomial.

Notice $z, w \in \mathbb{C}$ are L.I. over \mathbb{R} iff $|z\overline{w} - \overline{z}w| > 0$. Fix a prime P, define

$$A(\gamma) = B(s, P)(L(s, \chi)\overline{L(s, \psi)} - \overline{L(s, \chi)}L(s, \psi)),$$

where B(s, P) is a specific Dirichlet polynomial. Suppose we know that for a constant $c \neq 0$,

$$\sum_{0 < \gamma \leq T} A(\gamma) \sim c N(T) \text{ and } \sum_{0 < \gamma \leq T} |A(\gamma)|^2 \ll N(T),$$

Notice $z, w \in \mathbb{C}$ are L.I. over \mathbb{R} iff $|z\overline{w} - \overline{z}w| > 0$. Fix a prime P, define

$$A(\gamma) = B(s, P)(L(s, \chi)\overline{L(s, \psi)} - \overline{L(s, \chi)}L(s, \psi))$$

where B(s, P) is a specific Dirichlet polynomial. Suppose we know that for a constant $c \neq 0$,

$$\sum_{0 < \gamma \leq T} A(\gamma) \sim c N(T) \text{ and } \sum_{0 < \gamma \leq T} |A(\gamma)|^2 \ll N(T),$$

then

$$\sum_{\substack{0 < \gamma \le T \\ A(\gamma) \neq 0}} 1 \stackrel{\mathsf{C-S}}{\ge} \frac{|\sum A(\gamma)|^2}{\sum |A(\gamma)|^2} \gg \frac{|c|^2 N(T)^2}{N(T)} = |c|^2 N(T).$$

■ Ideally we would like to just apply Landau's formula to $L(s,\chi)\overline{L(s,\psi)}$ at the appropriate points

- Ideally we would like to just apply Landau's formula to $L(s,\chi)\overline{L(s,\psi)}$ at the appropriate points
- Series definition not valid! So use approximate functional equation

- Ideally we would like to just apply Landau's formula to $L(s,\chi)\overline{L(s,\psi)}$ at the appropriate points
- Series definition not valid! So use approximate functional equation
- Then we can apply (uniform) Landau's formula

- Ideally we would like to just apply Landau's formula to $L(s, \chi)\overline{L(s, \psi)}$ at the appropriate points
- Series definition not valid! So use approximate functional equation
- Then we can apply (uniform) Landau's formula
- \blacksquare We need the B(s,P) factor to have the mean value not being trivially 0

- Ideally we would like to just apply Landau's formula to $L(s, \chi)\overline{L(s, \psi)}$ at the appropriate points
- Series definition not valid! So use approximate functional equation
- Then we can apply (uniform) Landau's formula
- \blacksquare We need the B(s,P) factor to have the mean value not being trivially 0
- It also takes some effort to prove that the c we get is nonzero!

- Ideally we would like to just apply Landau's formula to $L(s,\chi)\overline{L(s,\psi)}$ at the appropriate points
- Series definition not valid! So use approximate functional equation
- Then we can apply (uniform) Landau's formula
- \blacksquare We need the B(s,P) factor to have the mean value not being trivially 0
- It also takes some effort to prove that the c we get is nonzero!
- The 4th moment is harder to estimate but we only need an upper bound

Similar to Theorem 1, but we start from

$$\frac{1}{2\pi i}\int_{\mathfrak{C}}\frac{\zeta'}{\zeta}(s)B(s,p)L(s,\chi)\,ds.$$

 The role of Landau's Formula is replaced by the *Modified* Gonek Lemma

Similar to Theorem 1, but we start from

$$\frac{1}{2\pi i}\int_{\mathfrak{C}}\frac{\zeta'}{\zeta}(s)B(s,p)L(s,\chi)\,ds.$$

- The role of Landau's Formula is replaced by the *Modified* Gonek Lemma
- The B(s, p) factor is now simpler which makes proving $c \neq 0$ easier (so we get complex characters)

Similar to Theorem 1, but we start from

$$\frac{1}{2\pi i} \int_{\mathfrak{C}} \frac{\zeta'}{\zeta}(s) B(s,p) L(s,\chi) \, ds.$$

- The role of Landau's Formula is replaced by the *Modified* Gonek Lemma
- The B(s, p) factor is now simpler which makes proving $c \neq 0$ easier (so we get complex characters)
- A more *natural* approach, but the analysis is more difficult (Garunkstis–Kalpokas–Steuding, 2010)

• Let $\mathbb{H} = \{z \in \mathbb{C} : \operatorname{Im} z > 0\}$ and $\Gamma = \mathsf{SL}_2(\mathbb{Z})$

• Let
$$\mathbb{H} = \{z \in \mathbb{C} : \operatorname{Im} z > 0\}$$
 and $\Gamma = \mathsf{SL}_2(\mathbb{Z})$

 \blacksquare Γ acts on \mathbbm{H} as Möbius transformations

$$\gamma z = \frac{az+b}{cz+d}, \quad \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma.$$

• Let
$$\mathbb{H} = \{z \in \mathbb{C} : \operatorname{Im} z > 0\}$$
 and $\Gamma = \mathsf{SL}_2(\mathbb{Z})$

 \blacksquare Γ acts on \mathbbm{H} as Möbius transformations

$$\gamma z = \frac{az+b}{cz+d}, \quad \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma.$$

• Then $\Gamma \setminus \mathbb{H}$ is a Riemann surface

Let
$$\mathbb{H} = \{z \in \mathbb{C} : \operatorname{Im} z > 0\}$$
 and $\Gamma = \mathsf{SL}_2(\mathbb{Z})$

 \blacksquare Γ acts on $\mathbb H$ as Möbius transformations

$$\gamma z = \frac{az+b}{cz+d}, \quad \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma.$$

• Then $\Gamma \setminus \mathbb{H}$ is a Riemann surface

• $f : \mathbb{H} \longrightarrow \mathbb{C}$ is called an *automorphic form* if

Let
$$\mathbb{H} = \{z \in \mathbb{C} : \operatorname{Im} z > 0\}$$
 and $\Gamma = \mathsf{SL}_2(\mathbb{Z})$

• Γ acts on $\mathbb H$ as Möbius transformations

$$\gamma z = \frac{az+b}{cz+d}, \quad \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma.$$

• Then $\Gamma \setminus \mathbb{H}$ is a Riemann surface

• $f : \mathbb{H} \longrightarrow \mathbb{C}$ is called an *automorphic form* if • $f(\gamma z) = f(z)$, for all $\gamma \in \Gamma$

Let
$$\mathbb{H} = \{z \in \mathbb{C} : \operatorname{Im} z > 0\}$$
 and $\Gamma = \mathsf{SL}_2(\mathbb{Z})$

• Γ acts on $\mathbb H$ as Möbius transformations

$$\gamma z = \frac{az+b}{cz+d}, \quad \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma.$$

• Then $\Gamma \setminus \mathbb{H}$ is a Riemann surface

f: ℍ → ℂ is called an *automorphic form* if
 f(γz) = f(z), for all γ ∈ Γ
 (Δ + λ)f = 0, where Δ is the Laplacian on ℍ

Spectrum of Δ

Can you hear the shape of a drum?

Can you hear the shape of a drum? No!

 $\mathsf{isospectral} \not\equiv \mathsf{isometric}$

■ Can you hear the shape of a drum? No! isospectral ≠ isometric

• $\lambda = s(1-s)$ with $s = \frac{1}{2} + it$ or $0 \le s \le 1$

Can you hear the shape of a drum? No!

 $\mathsf{isospectral} \not\equiv \mathsf{isometric}$

λ = s(1 − s) with s = ¹/₂ + it or 0 ≤ s ≤ 1
Since Γ\⊞ is non-compact Δ has both a discrete and a continuous spectrum

Can you hear the shape of a drum? No!

isospectral $\not\equiv$ isometric

- $\lambda = s(1-s)$ with $s = \frac{1}{2} + it$ or $0 \le s \le 1$
- Since $\Gamma \backslash \mathbb{H}$ is non-compact Δ has both a discrete and a continuous spectrum
- \blacksquare Maass cusp forms ϕ_n form an orthonormal system of eigenfunctions of Δ

Can you hear the shape of a drum? No!

isospectral $\not\equiv$ isometric

- $\lambda = s(1-s)$ with $s = \frac{1}{2} + it$ or $0 \le s \le 1$
- Since $\Gamma \backslash \mathbb{H}$ is non-compact Δ has both a discrete and a continuous spectrum
- \blacksquare Maass cusp forms ϕ_n form an orthonormal system of eigenfunctions of Δ
- Eisenstein series:

$$E(z,s) = \sum_{\gamma \in \Gamma_{\infty} \setminus \Gamma} (\operatorname{Im}(\gamma z))^{s}$$

 \blacksquare Classify $\gamma \neq I$ as elliptic, parabolic, hyperbolic

- \blacksquare Classify $\gamma \neq I$ as elliptic, parabolic, hyperbolic
- \blacksquare The isometries on $\mathbb H$ are Möbius transformations

- Classify $\gamma \neq I$ as elliptic, parabolic, hyperbolic
- \blacksquare The isometries on $\mathbb H$ are Möbius transformations
- On III the geodesics are lines and semi-circles perpendicular to the real axis

- Classify $\gamma \neq I$ as elliptic, parabolic, hyperbolic
- \blacksquare The isometries on $\mathbb H$ are Möbius transformations
- On III the geodesics are lines and semi-circles perpendicular to the real axis
- Hyperbolic motions correspond to closed geodesics on $\Gamma \backslash \mathbb{H} !$

- Classify $\gamma \neq I$ as elliptic, parabolic, hyperbolic
- \blacksquare The isometries on $\mathbb H$ are Möbius transformations
- On ℍ the geodesics are lines and semi-circles perpendicular to the real axis
- Hyperbolic motions correspond to closed geodesics on $\Gamma \backslash \mathbb{H} !$

Theorem (Prime Geodesic Theorem)

Let
$$\pi_{\Gamma}(x) = \#\{\{\gamma\} : N(\gamma) \le x\}$$
, then $\pi_{\Gamma}(x) \sim \frac{x}{\log x}$.

• Let
$$\lambda_j = \frac{1}{4} + t_j^2$$
 be the eigenvalues of Δ

$$S(T,X) = \sum_{|t_j| \le T} X^{it_j}$$

$$S(T,X) = \sum_{|t_j| \le T} X^{it_j}$$

Essential in the proof of Prime Geodesic Theorem

$$S(T,X) = \sum_{|t_j| \le T} X^{it_j}$$

Essential in the proof of Prime Geodesic TheoremTrivial estimate (Weyl's Law)

$$S(T,X) = \sum_{|t_j| \le T} X^{it_j}$$

- Essential in the proof of Prime Geodesic Theorem
- Trivial estimate (Weyl's Law)

$$\bullet \ S(T,X) = O(T^2)$$

$$S(T,X) = \sum_{|t_j| \le T} X^{it_j}$$

Essential in the proof of Prime Geodesic Theorem

$$\bullet \ S(T,X) = O(T^2)$$

Iwaniec (1984)
Exponential Sum

Let λ_j = ¹/₄ + t²_j be the eigenvalues of Δ
For X > 1, define

$$S(T,X) = \sum_{|t_j| \le T} X^{it_j}$$

- Essential in the proof of Prime Geodesic Theorem
- Trivial estimate (Weyl's Law)

$$\bullet S(T,X) = O(T^2)$$

Iwaniec (1984)

 $\label{eq:started} \bullet \ S(T,X) = O(X^{11/48+\epsilon}T) \implies O(x^{35/48+\epsilon}) \text{ in PGT}$

Exponential Sum

$$S(T,X) = \sum_{|t_j| \le T} X^{it_j}$$

Essential in the proof of Prime Geodesic Theorem

$$\bullet S(T,X) = O(T^2)$$

Iwaniec (1984)

• $S(T,X) = O(X^{11/48+\epsilon}T) \implies O(x^{35/48+\epsilon})$ in PGT

Luo–Sarnak (1995)

Exponential Sum

$$S(T,X) = \sum_{|t_j| \le T} X^{it_j}$$

Essential in the proof of Prime Geodesic Theorem

$$\bullet S(T,X) = O(T^2)$$

Iwaniec (1984)

 $\label{eq:started} \bullet \ S(T,X) = O(X^{11/48+\epsilon}T) \implies O(x^{35/48+\epsilon}) \text{ in PGT}$

Luo–Sarnak (1995)

•
$$S(T,X) = O(X^{1/8}T^{5/4}(\log T)^2) \implies O(x^{7/10+\epsilon})$$

• Let
$$N(z, w, X) = \#\{\gamma \in \Gamma : \gamma z \in B_w(\cosh^{-1} \frac{X}{2})\}$$

Let
$$N(z, w, X) = \#\{\gamma \in \Gamma : \gamma z \in B_w(\cosh^{-1} \frac{X}{2})\}$$

Difficult since no analogue of Gauss' geometric method!

- Let $N(z, w, X) = \#\{\gamma \in \Gamma : \gamma z \in B_w(\cosh^{-1} \frac{X}{2})\}$
- Difficult since no analogue of Gauss' geometric method!
- Define (for smooth, compactly supported *f*)

$$N_f(X) = \int_{\Gamma \setminus \mathbb{H}} f(z) N(z, z, X) \, d\mu(z)$$

- Let $N(z, w, X) = \#\{\gamma \in \Gamma : \gamma z \in B_w(\cosh^{-1} \frac{X}{2})\}$
- Difficult since no analogue of Gauss' geometric method!
- Define (for smooth, compactly supported f)

$$N_f(X) = \int_{\Gamma \setminus \mathbb{H}} f(z) N(z, z, X) \, d\mu(z)$$

Apply pre-trace formula to a mollified version of

 $\chi_{[0,(X-2)/4]}(u)$

- Let $N(z, w, X) = \#\{\gamma \in \Gamma : \gamma z \in B_w(\cosh^{-1} \frac{X}{2})\}$
- Difficult since no analogue of Gauss' geometric method!
- Define (for smooth, compactly supported *f*)

$$N_f(X) = \int_{\Gamma \setminus \mathbb{H}} f(z) N(z, z, X) \, d\mu(z)$$

Apply pre-trace formula to a mollified version of

$$\chi_{[0,(X-2)/4]}(u)$$

 $\blacksquare\ S(T,X)$ appears when estimating the contribution of the discrete spectrum

Conjecture (Petridis-Risager 2014)

For X>1, $S(T,X) \ll_{\varepsilon} T^{1+\varepsilon} X^{\varepsilon}.$

• This implies the best possible error term in PGT $O(x^{3/4+\epsilon})$

Conjecture (Petridis-Risager 2014)

For X>1, $S(T,X)\ll_{\varepsilon}T^{1+\varepsilon}X^{\varepsilon}.$

■ This implies the best possible error term in PGT O(x^{3/4+ϵ})
 ■ Also for hyperbolic lattice counting (on average) O(x^{1/2+ϵ})

Landau-type Formula

Let
$$\Lambda_{\Gamma}(X) = \begin{cases} \log(N(\mathfrak{p})), & \text{if } X = N(\mathfrak{p})^{\ell}, \ell \in \mathbb{N}, \\ 0, & \text{otherwise.} \end{cases}$$

Landau-type Formula

Let
$$\Lambda_{\Gamma}(X) = \begin{cases} \log(N(\mathfrak{p})), & \text{if } X = N(\mathfrak{p})^{\ell}, \ell \in \mathbb{N}, \\ 0, & \text{otherwise.} \end{cases}$$

Theorem 3 (L 2014)

For a fixed X > 1,

$$S(T,X) = \frac{|F|}{\pi} \frac{\sin(T\log X)}{\log X} T + \frac{T}{\pi} (X^{1/2} - X^{-1/2})^{-1} \Lambda_{\Gamma}(X) + \frac{2T}{\pi} X^{-1/2} \Lambda(X^{1/2}) + O\left(\frac{T}{\log T}\right)$$

$$\sum_{t_j>0} h(t_j) + \frac{1}{4\pi} \int_{-\infty}^{\infty} h(r) \frac{-\varphi'}{\varphi} \left(\frac{1}{2} + ir\right) dr$$

$$\sum_{t_j>0} h(t_j) + \frac{1}{4\pi} \int_{-\infty}^{\infty} h(r) \frac{-\varphi'}{\varphi} \left(\frac{1}{2} + ir\right) dr$$
$$= \frac{|F|}{4\pi} \int_{-\infty}^{\infty} h(r) r \tanh(\pi r) dr$$

$$\begin{split} \sum_{t_j > 0} h(t_j) &+ \frac{1}{4\pi} \int_{-\infty}^{\infty} h(r) \frac{-\varphi'}{\varphi} \left(\frac{1}{2} + ir\right) dr \\ &= \frac{|F|}{4\pi} \int_{-\infty}^{\infty} h(r) r \tanh(\pi r) dr \\ &+ \sum_{\mathfrak{p}} \sum_{\ell=1}^{\infty} \left(N(\mathfrak{p})^{\ell/2} - N(\mathfrak{p})^{-\ell/2} \right)^{-1} g(\ell \log \mathfrak{p}) \log \mathfrak{p} \end{split}$$

$$\begin{split} \sum_{t_j > 0} h(t_j) &+ \frac{1}{4\pi} \int_{-\infty}^{\infty} h(r) \frac{-\varphi'}{\varphi} \left(\frac{1}{2} + ir\right) dr \\ &= \frac{|F|}{4\pi} \int_{-\infty}^{\infty} h(r) r \tanh(\pi r) dr \\ &+ \sum_{\mathfrak{p}} \sum_{\ell=1}^{\infty} \left(N(\mathfrak{p})^{\ell/2} - N(\mathfrak{p})^{-\ell/2} \right)^{-1} g(\ell \log \mathfrak{p}) \log \mathfrak{p} \\ &+ \sum_{\mathcal{R}} \sum_{0 < \ell < m} (2m \sin \frac{\pi \ell}{m})^{-1} \int_{-\infty}^{\infty} h(r) \frac{\cosh \pi (1 - 2\ell/m) r}{\cosh \pi r} dr \end{split}$$

By Selberg Trace Formula:

$$\begin{split} \sum_{t_j>0} h(t_j) &+ \frac{1}{4\pi} \int_{-\infty}^{\infty} h(r) \frac{-\varphi'}{\varphi} \left(\frac{1}{2} + ir\right) dr \\ &= \frac{|F|}{4\pi} \int_{-\infty}^{\infty} h(r) r \tanh(\pi r) dr \\ &+ \sum_{\mathfrak{p}} \sum_{\ell=1}^{\infty} \left(N(\mathfrak{p})^{\ell/2} - N(\mathfrak{p})^{-\ell/2} \right)^{-1} g(\ell \log \mathfrak{p}) \log \mathfrak{p} \\ &+ \sum_{\mathcal{R}} \sum_{0 < \ell < m} (2m \sin \frac{\pi \ell}{m})^{-1} \int_{-\infty}^{\infty} h(r) \frac{\cosh \pi (1 - 2\ell/m) r}{\cosh \pi r} dr \end{split}$$

+ trash...

• Set
$$h(r) = (\chi_{[-T,T]} * \psi_{\epsilon})(r)(X^{ir} + X^{-ir})$$

• Set
$$h(r) = (\chi_{[-T,T]} * \psi_{\epsilon})(r)(X^{ir} + X^{-ir})$$

Balance between smoothing $\sum h(t_i)$ and other error terms

• Set $h(r) = (\chi_{[-T,T]} * \psi_{\epsilon})(r)(X^{ir} + X^{-ir})$

Balance between smoothing $\sum h(t_i)$ and other error terms

 Trickiest term to estimate is the contribution of continuous spectrum

Proof (cont.)

• Set $h(r) = (\chi_{[-T,T]} * \psi_{\epsilon})(r)(X^{ir} + X^{-ir})$

Balance between smoothing $\sum h(t_j)$ and other error terms

- Trickiest term to estimate is the contribution of continuous spectrum
- However, after a suitable change of contour we can use an argument similar to Landau's original one

Remarks (Theorem 3)

Remarks (Theorem 3)

We would like an actual Landau formula!

Remarks (Theorem 3)

We would like an actual Landau formula!

Generalisation to other spaces?

Kiitos! ありがとうございます