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It is at the same time unnerving and awe-inspiring that the world of tiny particles
should have anything to do with the mysteries of the prime numbers. Does nature
really contain the clues to unravel the dilemma? It requires us to look at a story,
which spans over three centuries, to understand how we have ended up in such a
situation. Unfortunately, this story doesn’t yet have an end, and in fact has the
most powerful cliffhanger of all times. The accidental encounter of two people over
tea, however, might just have changed this. Come to find out why.

1 What Is Chaos?

Classically — for systems obeying Newton’s 2nd Law — chaos is often understood as
extreme sensitivity to small changes in initial conditions. This is sometimes colloquially
known as the butterfly effect: even the very small flapping of wings of a butterfly can
eventually lead the system of global weather to produce a tornado in some other location.
This is not a good example though. After all, the weather is a very complicated system
so of course we expect bizarre behaviour. What is more striking is that it is often systems
governed by very simple rules which exhibit chaos. We’ll see two examples of this in a
second. But first it is important to make a distinction between chaos and randomness.
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You may be familiar with the concept of random processes from your probability
course. This is not what chaos is at all. Random is truly random. Chaotic systems,
however, are governed by deterministic rules1 so there is no chance for anything to be
random. What we do experience instead is the impossibility of predicting the behaviour
of the system. Yet, through chaos we often end up observing a certain level of order, which
hints that there’s more going on behind the scenes than what’s been revealed. This is not
a mere figure of speech, however, as you can witness from the following example which
depicts the so called Lorenz attractor. It is a chaotic system that arises when modelling
weather on a large scale, for example, and still it is easy to see that there is a certain
amount of order present (as we might expect!).

Figure 1: Lorenz Attractor. Source: Wikimedia Commons

Why does this happen though? Where does this chaos mathematically arise from?
It turns out that chaos requires the equations describing the dynamical system to be
nonlinear. For example, the Lorenz attractor is given by the system

dx

dt
= σ(y − x), dy

dt
= x(ρ− z)− y, dz

dt
= xy − βz.

1At least in our case. There are things known as Complex Systems where you don’t require deter-
ministic rules. These systems end up exhibiting similar behaviour to chaos and are not random at all,
despite what one might expect.
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Let’s look at another example, the logistic map. It is a discrete recurrence relation
given by

xn+1 = rxn(1− xn),

where r > 0. These equations can describe for example the evolution of a population
with r being the rate of reproduction. Up to about r = 3.57 or so this relation yields a
nice graph with predictable behaviour. Around this boundary all hell breaks loose. Even
the slightest change to r dramatically changes the look of the graph. Yet, this is not the
whole story: we can still find ranges of r > 3.57 where we do get regular behaviour. These
ranges are called islands of stability.

Figure 2: Bifurcation diagram for the logistic map. It displays the amount of periodic
orbits present in the system for different r. Source: Wikimedia Commons

One final example which we will return to later in a different setting: dynamical
billiards. You should already be familiar with these from last term’s talk, but just in case
let me start from the beginning. As a dynamical system we can think of a dynamical
billiard as a region Ω in R2 such that the potential V of the system satisfies V (Ω) = 0,
V (R2 \ Ω) = ∞. Moreover we place a single particle inside the region with a specific
initial velocity and direction. After that the evolution of the system is governed by the
law that angle of reflection equals angle of incidence and no energy is lost. The shape of
the billiard table obviously affects the motion. A rectangular table gives very systematic
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motion whereas a stadium shaped one already yields chaos.

If you want to learn more about chaos or complex systems I suggest the following
texts: Thompson and Stewart [7], Batty [2], Barabási [1].

2 Quantum Mechanics

In case you haven’t encountered quantum mechanics before, I will give a quick primer
containing the bare minimum needed for this talk. For a very approachable introduction
see Griffiths and Harris [4].

In classical mechanics you are used to being able to describe all quantities of a system
accurately. More precisely, what I mean is that if you have a swinging pendulum, for
example, you can at any given time determine its exact position, velocity and so on. In
quantum mechanics, however, this is fundamentally2 impossible. The more accurately
you try to measure a particle’s position the harder it becomes to measure its velocity
(or momentum). This is called the Heisenberg Uncertainty Principle and is sometimes
expressed in the form σxσp ≥ ~

2 , where the σ’s denote the usual statistical quantity of
standard deviation. More accurately then, this says that the more accurate our measure-
ment of, say, the position of the particle is (i.e. the standard deviation is small) the larger
the standard deviation for the momentum must be.

This is exactly analogous to the situation of a wave on a string. If we flip the string
in such a way that only a single moving wave is produced then it is pretty easy to tell the
position of that wave, but we don’t really have any meaningful wavelength for a lone wave.
Whereas if we start flipping the string in a more controlled manner and produce sinusoidal
waves then the wavelength is straightforward to determine, but it becomes harder to state
where the wave actually is at any given time. This analogue is valid because of the de
Broglie formula which relates the momentum of a particle to the wavelength of its wave
function.

All of quantum mechanics revolves around (get it?) the Schrödinger equation for the
2That is, provable from the postulates of quantum mechanics.
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wave function Ψ(x, t), which is usually given as

i~
∂Ψ
∂t

= − ~2

2m∇
2Ψ + ΨV, (1)

where V is the potential energy of the system, ∇2 is the Laplacian, and ~ denotes the
reduced Planck’s constant. Equation (1) governs the evolution of the quantum system
and the wave function describes the state of the system at any given time as a function
of the position of the particle(s) in such a way that |Ψ(x, t)|2 dx gives the probability of
finding the particle at point x at time t. What physicists like to do is look for certain kinds
of solutions. With wave-like problems it often happens that combinations of stationary
solutions (not dependent on time) yield all the possible solutions to the system. Moreover,
the stationary solutions conveniently arise from separable wave functions. Thus, we may
write Ψ(x, t) = ψ(x)f(t), where ψ is called the time-independent wave function. If we
put these into (1) we find that the time evolution of a quantum systems is always of the
form f(t) = e−iEnt/~, and that ψ satisfies the time-independent Schrödinger equation

Ĥψn = Enψn, (2)

where Ĥ denotes the Hamiltonian operator of the system, Ĥ = − ~2

2m
∇2 + V . This is

clearly an eigenvalue problem for Ĥ! The importance of this comes from the fact that Ĥ
is Hermitian and so its eigenvalues are real. Moreover, the eigenvalues En are the allowed
energies of the particle.3 In particular, for each stationary solution there is only one
allowed energy level! This is in stark contrast to classical systems which allow continuous
energy levels.

Now back to chaos. Have a look at what we said about chaos, now stare at the
Schrödinger equation, now back to me. Notice anything? Indeed, Schrödinger’s equation
is linear, which means that there can be no such thing as quantum chaos! Great, can we all
go home now? Unfortunately, this is just a result of indecisiveness among the physicists.
When they were originally looking for chaos in the quantum world they realised that it is
impossible to have chaos in the classical sense, exactly because of the above reason. This
opened up a debate: what should we call this thing we are researching if it doesn’t even
exist? Sometimes people get boggled by trivialities. Nevertheless, various alternatives
were suggested, such as Quantum Chaology. Eventually everyone came up with their

3In this talk I use “system” and “particle” synonymously since I will only consider quantum systems
with one particle.
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own favourite and no one preferred anyone else’s, so they settled back on quantum chaos.
Ain’t that just nice?

What do we understand by quantum chaos then? You might know that quantum me-
chanics was developed to in a way “replace” the classical Newtonian mechanics. There-
fore, quantum mechanics should be able to account for the behaviour of the world on the
larger “Newtonian” scale as well. This is the Bohr Correspondence Principle and it hap-
pens when ~ −→ 0, the so-called semiclassical limit. Quantum chaos then is the study of
systems whose semiclassical limit exhibits chaos. So, for example, the study of quantum
billiards whose classical versions are chaotic falls within the realm of quantum chaos.

3 Interlude to Analytic Number Theory

We’ll now cover some more mathematical ground. I will outline enough material about
analytic number theory to gain a basic understanding of the Riemann Hypothesis. We’ll
start with the most central definition in this field.

Definition 1. The Riemann zeta function is defined for real s > 1 by the absolutely
convergent series

ζ(s) =
∞∑

n=1

1
ns
.

Let us go back in time to when quantum mechanics was still as much out of reach as
getting the Brits to understand the word “insulation” is today. It’s no surprise that this
takes us all the way back to the man himself — Professor Leonhard Euler from the lovely
land of the Alps — in the year 1737. At the time he was a professor and the chair of the
mathematics department at the Academy of Sciences in St. Petersburg, Russia, having
wed his wife only 3 years previously. During this year, in which the famous University
of Göttingen4 was founded, Euler published a result which revealed the first connection
between the prime numbers and the zeta function — a finding which would eventually
spark centuries of intense research. Euler proved that the zeta function has an alternate

4This is where modern analytic number theory got its foundations.
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expression as a product over all primes:

ζ(s) =
∏
p

(
1− p−s

)−1

Notice, that this formula contains a proof of the infinitude of primes. As s −→ 1, ζ
approaches the divergent harmonic series. Now, if there were only finitely many primes
the product would remain finite as we pass to the limit, but this is a contradiction. This
argument is very different from the classical one given by Euclid and it already hints
at the deep underlying coupling between the zeta function and the primes. It is as if
somehow this uncannily simple function somehow manages to encode almost any possible
information about the mysterious prime numbers. We will see more evidence of this later.

Let us fast forward a hundred years or so to 1859, during which we witness the rise and
fall of such mathematical giants as Carl Friedrich Gauss and Évariste Galois. We zoom
to the aforementioned city of Göttingen in Germany into the office of a clever chap called
Bernhard Riemann, who had also just become head of the mathematics department there.
He must have been quite happy with himself having just published a paper in number
theory despite being a mathematical physicist. Little did he know at the time, though,
that the innocent assumption slipped in between some of the proofs would wreak havoc
amongst the greatest minds the world would have to offer in the future.

In order to understand what he said, we need to look at some of the other ideas in his
paper. Inspired by the findings of Euler described before, Riemann was led to investigate
the aptly named Riemann zeta function. Cauchy & Co. had just finished laying the
foundations of complex analysis and Riemann took advantage of this. His key idea was
to notice that we can consider ζ as a function of a complex variable, and that it does in
fact converge for all Re s > 1. Moreover, in this region ζ defines an analytic function, and
we all know that analytic functions are nice. Among the few proofs in his paper (most of
it consisted of definitions, conjectures, sketches of proofs, etc.) is another stroke of genius
known as the functional equation for ζ, which says that

ζ(s) = πs−1/2 Γ
(

1−s
2

)
Γ
(

s
2

) ζ(1− s).

This equation yields an extension of ζ to all of C as a meromorphic function with a simple
pole of residue 1 at 1.
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If you came to my previous talk on Nevanlinna Theory5 you know that the zeros of
analytic or meromorphic functions are very important. So let’s have a look at the zeros
of ζ. From the Euler Product, which is clearly valid wherever the series converges, we
can deduce that ζ(s) 6= 0 for Re s > 1 (otherwise one of the terms in the product should
be 0, which is not the case). On the other hand, we know that the Gamma function has
simple poles at the negative integers and at 0. The functional equation then implies that
ζ has simple zeros at the negative even integers (not at 0 though, ζ(0) = −1/2), and no
more zeros in this region. These are the so called “trivial zeros” of the zeta function, and
they are well understood. This leaves us with the “critical strip” 0 < Re s < 1. Riemann
argued that in this region ζ has infinitely many zeros. Let us denote these zeros by Z.
Moreover, from the functional equation and the simple fact that ζ(s) = ζ(s), he concluded
that the zeros satisfy a strong symmetry. Namely, if ζ(ρ) = 0 then ρ, 1 − ρ, and 1 − ρ
are zeros as well. The important thing to notice here is that it is the functional equation
which implies the symmetry of the zeros about the line Re s = 1/2. This line is called the
“critical line” of ζ. We are now in a position to state the hypothesis.

Riemann Hypothesis.
Z ⊂ {s ∈ C : Re s = 1/2}.

So Riemann said that all the zeros in fact lie on the axis of symmetry. He couldn’t
prove it though, and neither could anyone else. At first glance the way we stated the
hypothesis might seem a little innocent. Do not be deceived though, if true this result
would have wide ranging consequences.

At the time of Riemann one of the most important consequences of the Riemann
Hypothesis would have been the sharpest possible estimate in the Prime Number Theorem,
which was still unsolved. Recall that the Prime Number Theorem says that π(x) ∼ li(x)
where π(x) is the number of primes below x and li(x) is the logarithmic integral li(x) =∫ x

2 log−1 t dt. The Riemann Hypothesis would give us the error term to be O
(
x1/2 log2 x

)
.

This is where the initial interest came from. Since then there have been a lot of stories
about attempted solutions6. Yet, the fortress Riemann still holds.

5http://ucl.sneffel.com/index.php/File:Laaksonen-nev-26Oct.pdf
6Have a look at http://www.ams.org/notices/200303/fea-conrey-web.pdf
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4 Fitting It All Together — The Story of Two Men

We keep going along these lines for another hundred years or so: many grand ideas, little
to no success. In the beginning of the 20th century we finally see the seeds of our main
idea being planted. It was noticed that since the Riemann zeros are predicted to lie on
a line and the energy levels of a quantum mechanical system are always real (and hence
lie on a line), there could be some kind of relationship between them. George Pólya and
David Hilbert both suggested that Riemann zeros would arise as the eigenvalues of some
Hermitian operator — the so called Hilbert-Pólya conjecture. This is the so called spectral
theoretic approach. At the time, however, there was little evidence of this being the case
and not much happened on this front for a while.

Moving on, we arrive to the year 1972 and another continent. We are looking at two
guys, a physicist Freeman Dyson and a number theorist Hugh Montgomery, sipping their
afternoon tea at the Institute for Advanced Study at Princeton, USA. Montgomery was
explaining his recent work to his companion when Dyson suddenly remarks “Extraordi-
nary! Do you realize that’s the pair-correlation function for the eigenvalues of a random
Hermitian matrix? It’s also a model of the energy levels in a heavy nucleus”7.

Both of them had been working on something known as pair-correlation — Mont-
gomery for the Riemann zeros and Dyson for the eigenvalues of random matrices. Mont-
gomery had conjectured that the zeros of ζ cannot actually occur too close to one another.
More precisely, if we assume the Riemann hypothesis then the proportion of zeros sepa-
rated by a magnitude u is given by

1−
(sin πu

πu

)2
.

Strikingly this same formula describes the spacings of energy levels in specific quantum
mechanical systems — quantum chaotic systems!

You might have noticed the term “random matrix” in the quote by Dyson. For the
sake of keeping these notes concise I will only briefly touch upon this. Random matrices,
of course, are matrices with random entries with a specific probability distribution. It
suffices to say that it is one of the main tools used to study the energy levels of quantum

7http://www.americanscientist.org/issues/pub/the-spectrum-of-riemannium
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mechanical systems. This tool has subsequently entered the world of pure mathematics
as well.

As the final words I wish to outline the subsequent development in the quest to conquer
the fortress of Riemann. So, as said before, the pair-correlation statistic of the zeta
function seems to correspond to the aforementioned energy levels. This is actually because
these energy levels are described by eigenvalues of random Hermitian matrices. So we can
limit ourself to studying this connection between random matrix theory (RMT) and the
Riemann zeta function. It has been conjectured, the so called GUE conjecture, that
other statistics, such as the nearest-neighbour distribution8, of the Riemann zeros could
correspond to those of random matrices. It has actually been shown that this should be
the case through substantial calculations carried out by Odlyzko. This serves to give more
evidence for the connection between ζ and quantum chaos.

For now, I want to leave all the ideas mentioned here hanging in the air, slowly
sinking into the reader’s mind hopefully revealing the profoundness of this discussion. It
is suggested that those intrigued to read further consult the following texts: [6], [3], [5],
and the references therein.

8This is in contrast to the pair-correlation which considers all zeros at the same time. In nearest-
neighbour one considers the spacings between successive zeros.
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