Prime Number Theorem Niko Laaksonen UCL

m

Cicada

- Cicada
- Life cycles in predator–prey system

47

 \diamond

3

- Cicada
- Life cycles in predator–prey system

7 has no non-trivial divisors!

Definition

Definition

A positive number p is a prime number if its only positive divisors are 1 and itself.

• 2, 3, 5, 7, 11, 13, ...

Definition

A positive number p is a prime number if its only positive divisors are 1 and itself.

• 2, 3, 5, 7, 11, 13, ...

Definition

- 2, 3, 5, 7, 11, 13, ...
- What about 103?

Definition

- 2, 3, 5, 7, 11, 13, ...
- What about 103? A prime

Definition

- 2, 3, 5, 7, 11, 13, ...
- What about 103? A prime
- And 1033?

Definition

- 2, 3, 5, 7, 11, 13, ...
- What about 103? A prime
- And 1033? A prime

Definition

- 2, 3, 5, 7, 11, 13, ...
- What about 103? A prime
- And 1033? A prime
- 10333?

Definition

- 2, 3, 5, 7, 11, 13, ...
- What about 103? A prime
- And 1033? A prime
- 10333? Still a prime.

Definition

- 2, 3, 5, 7, 11, 13, ...
- What about 103? A prime
- And 1033? A prime
- 10333? Still a prime. So is 103333

Definition

A positive number p is a prime number if its only positive divisors are 1 and itself.

- 2, 3, 5, 7, 11, 13, ...
- What about 103? A prime
- And 1033? A prime
- 10333? Still a prime. So is 103333
- However,

 $1\,033\,333 = 7 \times 43 \times 3433.$

Definition

- 2, 3, 5, 7, 11, 13, ...
- What about 103? A prime
- And 1033? A prime
- 10333? Still a prime. So is 103333
- However, $1\,033\,333 = 7 \times 43 \times 3433.$
- In fact every number can be written as a product of primes.

Definition

- 2, 3, 5, 7, 11, 13, ...
- What about 103? A prime
- And 1033? A prime
- 10333? Still a prime. So is 103333
- However, $1\,033\,333 = 7 \times 43 \times 3433.$
- In fact every number can be written as a product of primes.
 - This representation is unique.

Theorem (Euclid (ca. 300 BC))

There are infinitely many primes.

Theorem (Euclid (ca. 300 BC))

There are infinitely many primes.

Proof.

Suppose, for contradiction, that there are finitely many primes.

Theorem (Euclid (ca. 300 BC))

There are infinitely many primes.

Proof.

Suppose, for contradiction, that there are finitely many primes. Thus we can list all the primes: $p_1, ..., p_N$ for some N > 0.

Theorem (Euclid (ca. 300 BC))

There are infinitely many primes.

Proof.

Suppose, for contradiction, that there are finitely many primes. Thus we can list all the primes: $p_1, ..., p_N$ for some N > 0. Define

$$Q=p_1\ldots p_N+1.$$

Theorem (Euclid (ca. 300 BC))

There are infinitely many primes.

Proof.

Suppose, for contradiction, that there are finitely many primes. Thus we can list all the primes: p_1, \ldots, p_N for some N > 0. Define

$$Q=p_1\ldots p_N+1.$$

Then the remainder of Q divided by any prime in our list is 1, i.e. none of our primes divide Q.
How many primes are there?

Theorem (Euclid (ca. 300 BC))

There are infinitely many primes.

Proof.

Suppose, for contradiction, that there are finitely many primes. Thus we can list all the primes: p_1, \ldots, p_N for some N > 0. Define

$$Q=p_1\ldots p_N+1.$$

Then the remainder of Q divided by any prime in our list is 1, i.e. none of our primes divide Q. Hence Q must have at least one prime factor not in the list of primes. This is a contradiction.

How many primes are there?

Theorem (Euclid (ca. 300 BC))

There are infinitely many primes.

Proof.

Suppose, for contradiction, that there are finitely many primes. Thus we can list all the primes: p_1, \ldots, p_N for some N > 0. Define

$$Q=p_1\ldots p_N+1.$$

Then the remainder of Q divided by any prime in our list is 1, i.e. none of our primes divide Q. Hence Q must have at least one prime factor not in the list of primes. This is a contradiction.

• Largest publicly known prime is $2^{43112609} - 1$

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Sieve of Eratosthenes (ca. 200 BC)

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Twin primes

- Twin primes
- Gaps between primes

- Twin primes
- Gaps between primes
 - How large?

Niko Laaksonen (UCL)

Theorem

For any $N \in \mathbb{N}$ there exists N - 1 consecutive numbers that are not prime.

Theorem

For any $N \in \mathbb{N}$ there exists N - 1 consecutive numbers that are not prime.

Proof.

Consider the numbers $N! + 2, N! + 3, \dots, N! + N$.

Theorem

For any $N \in \mathbb{N}$ there exists N - 1 consecutive numbers that are not prime.

Proof.

Consider the numbers N! + 2, N! + 3, ..., N! + N. Then N! + i is divisible by *i* for i = 2, ..., N, and hence is not a prime.

Theorem

For any $N \in \mathbb{N}$ there exists N - 1 consecutive numbers that are not prime.

Proof.

Consider the numbers N! + 2, N! + 3, ..., N! + N. Then N! + i is divisible by *i* for i = 2, ..., N, and hence is not a prime.

In other words, there are abritrarily long gaps between primes.

How many of them are there?

- How many of them are there?
 - · Infinitely many

- How many of them are there?
 - Infinitely many
- How large gaps are there between primes?

- · How many of them are there?
 - Infinitely many
- How large gaps are there between primes?
 - Arbitrarily large

- · How many of them are there?
 - Infinitely many
- How large gaps are there between primes?
 - Arbitrarily large
- How many primes up to some number x?

Definition

Definition

Definition

x	$\pi(x)$
1	0
2	1

Definition

Definition

Definition

x	$\pi(x)$
1	0
2	1
$\sqrt{2}$	1
3	2
3.0001	2

Definition

x	$\pi(x)$
1	0
2	1
$\sqrt{2}$	1
3	2
3.0001	2
13	6
100	25
101	26
1000	168

Definition

Denote the number of primes up to *x* by $\pi(x)$.

X	$\pi(x)$
1	0
2	1
$\sqrt{2}$	1
3	2
3.0001	2
13	6
100	25
101	26
1000	168

• Can we find a formula for $\pi(x)$?

Definition

x	$\pi(x)$
1	0
2	1
$\sqrt{2}$	1
3	2
3.0001	2
13	6
100	25
101	26
1000	168

- Can we find a formula for $\pi(x)$?
- Not a smooth function—step function

Definition

x	$\pi(x)$
1	0
2	1
$\sqrt{2}$	1
3	2
3.0001	2
13	6
100	25
101	26
1000	168

- Can we find a formula for $\pi(x)$?
- Not a smooth function—step function
- Can we find f(x) such that f(n) = π(n) if n is a prime?

Definition

x	$\pi(x)$
1	0
2	1
$\sqrt{2}$	1
3	2
3.0001	2
13	6
100	25
101	26
1000	168

- Can we find a formula for $\pi(x)$?
- Not a smooth function—step function
- Can we find f(x) such that f(n) = π(n) if n is a prime?
- i.e. Can we approximate $\pi(x)$ by a smooth function f(x)?

A Formula for Primes

In fact, no polynomial will do!

• Born to a poor family

- Born to a poor family
- · Child prodigy

- Born to a poor family
- · Child prodigy

•
$$1+2+\ldots+100=?$$

- · Born to a poor family
- Child prodigy
 - $1 + 2 + \ldots + 100 = ?$
- Didn't care about publishing his results

- · Born to a poor family
- Child prodigy
 - $1+2+\ldots+100=?$
- Didn't care about publishing his results
- Hobby: computing primes

x	$\pi(x)$	$\frac{x}{\pi(x)}$
1 000	168	5.9523
10000	1 2 2 9	8.1367
100 000	9 592	10.4254
1 000 000	78498	12.7392
10000000	664 579	15.0471
100 000 000	5761455	17.3567
1 000 000 000	50847534	19.6666

Going from 10^n to 10^{n+2} increases the ratio by ~ 4.6 .

Going from 10^n to 10^{n+2} increases the ratio by ~ 4.6 .

Going from 10^n to 10^{n+2} increases the ratio by ~ 4.6 .

$$\frac{\text{change in ratio}}{\text{change in exponent}} = \frac{4.6}{2} = 2.3$$

•
$$\log_a x = c \iff a^c = x$$

$$\frac{\text{change in ratio}}{\text{change in exponent}} = \frac{4.6}{2} = 2.3$$

- $\log_a x = c \iff a^c = x$
- $\log_a a = 1$

$$\frac{\text{change in ratio}}{\text{change in exponent}} = \frac{4.6}{2} = 2.3$$

- $\log_a x = c \iff a^c = x$
- $\log_a a = 1$
- $y \log x = \log x^y$

$$\frac{\text{change in ratio}}{\text{change in exponent}} = \frac{4.6}{2} = 2.3$$

- $\log_a x = c \iff a^c = x$
- $\log_a a = 1$
- $y \log x = \log x^y$
- $\log_b x = \frac{\log_a x}{\log_a b}$

$$\frac{\text{change in ratio}}{\text{change in exponent}} = \frac{4.6}{2} = 2.3$$

Rules of the Logarithm

• $\log_a x = c \iff a^c = x$

• $\log_a a = 1$

• $y \log x = \log x^y$

• $\log_b x = \frac{\log_a x}{\log_a b}$

So, for example,

 $\log_{10} 10^n = n$

. • • •

$$\frac{\text{change in ratio}}{\text{change in exponent}} = \frac{4.6}{2} = 2.3$$

Rules of the Logarithm

$$\cdot \log_a x = c \iff a^c = x$$

$$\cdot \log_a a = 1$$

$$\cdot y \log x = \log x^y$$

$$\cdot \log_b x = \frac{\log_a x}{\log_a b}$$
So, for example,
$$\log_{10} 10^n = n$$

$$\log_{10} 10^{n+2} = n+2.$$

$$\frac{\text{change in ratio}}{\text{change in exponent}} = \frac{4.6}{2} = 2.3$$

Rules of the Logarithm

$$\cdot \log_{a} x = c \iff a^{c} = x$$

$$\cdot \log_{a} a = 1$$

$$\cdot y \log x = \log x^{y}$$

$$\cdot \log_{b} x = \frac{\log_{a} x}{\log_{a} b}$$

$$\Delta \frac{x}{\pi(x)} = 2.3\Delta \log_{10} x$$

$$\frac{\text{change in ratio}}{\text{change in exponent}} = \frac{4.6}{2} = 2.3$$
Rules of the Logarithm
$$\begin{array}{l} \cdot \log_{a} x = c \iff a^{c} = x \\ \cdot \log_{a} a = 1 \\ \cdot y \log x = \log x^{y} \\ \cdot \log_{b} x = \frac{\log_{a} x}{\log_{a} b} \end{array}$$
So, for example,
$$\begin{array}{l} \log_{10} 10^{n} = n \\ \log_{10} 10^{n+2} = n+2. \end{array}$$

$$\begin{array}{l} \log_{10} 10^{n+2} = n+2. \end{array}$$

$$\begin{array}{l} \Delta \frac{x}{\pi(x)} = 2.3 \Delta \log_{10} x \\ 2.3 \approx \log_{e} 10 = 2.3026 \dots \end{array}$$

$$\frac{\text{change in ratio}}{\text{change in exponent}} = \frac{4.6}{2} = 2.3$$

Rules of the Logarithm

$$\cdot \log_{a} x = c \iff a^{c} = x$$

$$\cdot \log_{a} a = 1$$

$$\cdot y \log x = \log x^{y}$$

$$\cdot \log_{b} x = \frac{\log_{a} x}{\log_{a} b}$$

$$\Delta \frac{x}{\pi(x)} = 2.3\Delta \log_{10} x$$

$$2.3 \approx \log_{e} 10 = 2.3026 \dots$$

$$\Delta \frac{\pi(x)}{x} = \Delta(\log_{e} 10\log_{10} x) = \Delta \log x$$

X	$\pi(x)$	$\frac{x}{\pi(x)}$	$\frac{\log x}{x/\pi(x)}$
1 000	168	5.9523	1.1605
10 000	1 2 2 9	8.1367	1.1319
100 000	9 592	10.4254	1.1043
1 000 000	78 498	12.7392	1.0844
10 000 000	664 579	15.0471	1.0711
100 000 000	5761455	17.3567	1.0613
1 000 000 000	50847534	19.6666	1.0537

X	$\pi(x)$	$\frac{x}{\pi(x)}$	$\frac{\log x}{x/\pi(x)}$
1 000	168	5.9523	1.1605
10 000	1 2 2 9	8.1367	1.1319
100 000	9 592	10.4254	1.1043
1 000 000	78 498	12.7392	1.0844
10 000 000	664 579	15.0471	1.0711
100 000 000	5761455	17.3567	1.0613
1 000 000 000	50847534	19.6666	1.0537

Rearrange:

$$\frac{\log x}{x/\pi(x)} = \frac{\pi(x)}{x/\log x}$$

X	$\pi(x)$	$\frac{x}{\pi(x)}$	$\frac{\log x}{x/\pi(x)}$
1 000	168	5.9523	1.1605
10 000	1 2 2 9	8.1367	1.1319
100 000	9 592	10.4254	1.1043
1 000 000	78 498	12.7392	1.0844
10 000 000	664 579	15.0471	1.0711
100 000 000	5761455	17.3567	1.0613
1 000 000 000	50847534	19.6666	1.0537

Rearrange:

$$\frac{\log x}{x/\pi(x)} = \frac{\pi(x)}{x/\log x}$$

The ratio gets closer to 1 as *x* gets bigger.

X	$\pi(x)$	$\frac{x}{\pi(x)}$	$\frac{\log x}{x/\pi(x)}$
1 000	168	5.9523	1.1605
10 000	1 2 2 9	8.1367	1.1319
100 000	9 592	10.4254	1.1043
1 000 000	78 498	12.7392	1.0844
10 000 000	664 579	15.0471	1.0711
100 000 000	5761455	17.3567	1.0613
1 000 000 000	50847534	19.6666	1.0537

Rearrange:

$$\frac{\log x}{x/\pi(x)} = \frac{\pi(x)}{x/\log x}$$

The ratio gets closer to 1 as x gets bigger. Great!
Gauß' Way

61 <th1< th=""> 1 1 <th1< th=""></th1<></th1<>	
	A State of the second

$$\lim_{x \to \infty} \frac{\pi(x) \log x}{x} = 1$$

Gauß thus made the following conjecture:

Prime Number Theorem $\lim_{x\to\infty} \frac{\pi(x)\log x}{x} = 1$

· Gauß: failed

- · Gauß: failed
- · Legendre: failed

- · Gauß: failed
- Legendre: failed
- One step closer: Riemann (1859) and Dirichlet

- Gauß: failed
- Legendre: failed
- One step closer: Riemann (1859) and Dirichlet
- First proof independently by Jacques Hadamard and Charles-Jean de la Vallée Poussin (1896)

- Gauß: failed
- Legendre: failed
- One step closer: Riemann (1859) and Dirichlet
- First proof independently by Jacques Hadamard and Charles-Jean de la Vallée Poussin (1896)
- Since then many versions have been discovered:

- Gauß: failed
- Legendre: failed
- One step closer: Riemann (1859) and Dirichlet
- First proof independently by Jacques Hadamard and Charles-Jean de la Vallée Poussin (1896)
- Since then many versions have been discovered:
 - Newman's Short Proof (1980)

- Gauß: failed
- Legendre: failed
- One step closer: Riemann (1859) and Dirichlet
- First proof independently by Jacques Hadamard and Charles-Jean de la Vallée Poussin (1896)
- Since then many versions have been discovered:
 - Newman's Short Proof (1980)
 - Erdős and Selberg's Elementary Proof (1949)

Questions?

Questions? Let's have a break.

Harmonic Series

 $\sum_{i=1}^{\infty} \frac{1}{n}$

Harmonic Series

Diverges:
$$\sum_{i=1}^{\infty}$$

 $\frac{1}{n}$

Harmonic Series

Diverges:
$$\sum_{i=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \dots$$

Harmonic Series

Diverges: $\sum_{i=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \dots$ $= 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \dots$

Harmonic Series

Diverges: $\sum_{i=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \dots$ $= 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \dots$ $\ge 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right) + \dots$

Harmonic Series

Diverges: $\sum_{i=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \dots$ $= 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \dots$ $\ge 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right) + \dots$ $= 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots$

Harmonic Series

Diverges: $\sum_{i=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \dots$ $= 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \dots$ $\ge 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right) + \dots$ $= 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots$

$$\sum_{i=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

Geometric Series

$$\sum_{n=0}^{\infty} x^n, \quad |x| < 1$$

Geometric Series

$$\sum_{n=0}^{\infty} x^n, \quad |x| < 1$$

$$S = 1 + x + x^2 + x^3 + x^4 + \dots$$

Geometric Series

$$\sum_{n=0}^{\infty} x^n, \quad |x| < 1$$

$$S = 1 + x + x2 + x3 + x4 + \dots$$

$$xS = x + x2 + x3 + x4 + \dots$$

Geometric Series

$$\sum_{n=0}^{\infty} x^n, \quad |x| < 1$$

$$S = 1 + x + x^{2} + x^{3} + x^{4} + \dots$$
$$xS = x + x^{2} + x^{3} + x^{4} + \dots$$
$$S(1 - x) = 1$$

Geometric Series

$$\sum_{n=0}^{\infty} x^n, \quad |x| < 1$$

$$S = 1 + x + x^{2} + x^{3} + x^{4} + \dots$$
$$xS = x + x^{2} + x^{3} + x^{4} + \dots$$
$$S(1-x) = 1$$
$$S = \frac{1}{1-x}$$

Let's go back to infinitude of primes. Euler gave the following proof:

Let's go back to infinitude of primes. Euler gave the following proof:

There are infinitely many primes.

Suppose there are only finitely many primes p_1, \ldots, p_N ,

Let's go back to infinitude of primes. Euler gave the following proof:

There are infinitely many primes.

Suppose there are only finitely many primes p_1, \ldots, p_N , and consider

$$\prod_{i=1}^{N} \frac{1}{1 - \frac{1}{p_i}} = \prod_{i=1}^{N} \left(1 + \frac{1}{p_i} + \frac{1}{p_i^2} + \dots \right).$$

Let's go back to infinitude of primes. Euler gave the following proof:

There are infinitely many primes.

Suppose there are only finitely many primes p_1, \ldots, p_N , and consider

$$\prod_{i=1}^{N} \frac{1}{1 - \frac{1}{p_i}} = \prod_{i=1}^{N} \left(1 + \frac{1}{p_i} + \frac{1}{p_i^2} + \dots \right).$$

By unique factorization every positive number n appears exactly once in the expansion on the right.

Let's go back to infinitude of primes. Euler gave the following proof:

There are infinitely many primes.

Suppose there are only finitely many primes p_1, \ldots, p_N , and consider

$$\prod_{i=1}^{N} \frac{1}{1 - \frac{1}{p_i}} = \prod_{i=1}^{N} \left(1 + \frac{1}{p_i} + \frac{1}{p_i^2} + \dots \right).$$

By unique factorization every positive number n appears exactly once in the expansion on the right. Thus,

$$\prod_{i=1}^{N} \frac{1}{1 - \frac{1}{p_i}} \ge \sum_{n=1}^{\infty} \frac{1}{n}.$$

Let's go back to infinitude of primes. Euler gave the following proof:

There are infinitely many primes.

Suppose there are only finitely many primes $p_1, ..., p_N$, and consider

$$\prod_{i=1}^{N} \frac{1}{1 - \frac{1}{p_i}} = \prod_{i=1}^{N} \left(1 + \frac{1}{p_i} + \frac{1}{p_i^2} + \dots \right).$$

By unique factorization every positive number n appears exactly once in the expansion on the right. Thus,

$$\prod_{i=1}^{N} \frac{1}{1 - \frac{1}{p_i}} \ge \sum_{n=1}^{\infty} \frac{1}{n}.$$

However, the RHS is divergent while the product is finite. This is a contradiction.

We will prove the following

We will prove the following

Chebychev's Upper Bound (1850) $\frac{\pi(x)\log x}{x} \le A$ for some positive constant A > 1.
We will prove the following

Chebychev's Upper Bound (1850)

$$\frac{\pi(x)\log x}{x} \le A$$

for some positive constant A > 1.

Let's write $\pi(x)$ as

$$\pi(x) = \sum_{p \le x} 1.$$

We will prove the following

Chebychev's Upper Bound (1850)

$$\frac{\pi(x)\log x}{x} \le A$$

for some positive constant A > 1.

Let's write $\pi(x)$ as

$$\pi(x) = \sum_{p \le x} 1.$$

Chebychev considered

$$\theta(x) = \sum_{p \le x} \log p,$$

We will prove the following

Chebychev's Upper Bound (1850)

$$\frac{\pi(x)\log x}{x} \le A$$

for some positive constant A > 1.

Let's write $\pi(x)$ as

$$\pi(x) = \sum_{p \le x} 1.$$

Chebychev considered

$$\theta(x) = \sum_{p \le x} \log p,$$

where the sum is taken over all primes less than *x*.

$\theta(n) \le n \log 4$

$$\theta(n) \le n \log 4$$

$$\theta(n) \le n \log 4$$

$$2^{2n+1} = (1+1)^{2n+1}$$

$$\theta(n) \le n \log 4$$

$$2^{2n+1} = (1+1)^{2n+1} = \binom{2n+1}{0} + \binom{2n+1}{1} + \dots + \binom{2n+1}{2n+1}$$

$$\theta(n) \le n \log 4$$

$$2^{2n+1} = (1+1)^{2n+1} = \binom{2n+1}{0} + \binom{2n+1}{1} + \dots + \binom{2n+1}{2n+1} \\ \ge \binom{2n+1}{n} + \binom{2n+1}{n+1}$$

$$\theta(n) \le n \log 4$$

$$2^{2n+1} = (1+1)^{2n+1} = \binom{2n+1}{0} + \binom{2n+1}{1} + \dots + \binom{2n+1}{2n+1}$$
$$\geq \binom{2n+1}{n} + \binom{2n+1}{n+1}$$
$$= 2\binom{2n+1}{n}$$

$$\theta(n) \le n \log 4$$

$$2^{2n+1} = (1+1)^{2n+1} = \binom{2n+1}{0} + \binom{2n+1}{1} + \dots + \binom{2n+1}{2n+1}$$
$$\geq \binom{2n+1}{n} + \binom{2n+1}{n+1}$$
$$= 2\binom{2n+1}{n}$$
since $\binom{2n+1}{n} = \binom{2n+1}{n+1}$ (exercise!).

We had

$$n\log 4 \ge \log \binom{2n+1}{n}.$$

We had

$$n\log 4 \ge \log \binom{2n+1}{n}.$$

Let $p_k, p_{k+1}, \ldots, p_t$ be all primes between n+2 and 2n+1,

We had

$$n\log 4 \ge \log \binom{2n+1}{n}.$$

Let p_k , p_{k+1} , ..., p_t be all primes between n+2 and 2n+1, then

$$\Theta(2n+1) - \Theta(n+1) = \sum_{n+2 \le p \le 2n+1} \log p = \log(p_k p_{k+1} \dots p_t).$$

We had

$$n\log 4 \ge \log \binom{2n+1}{n}.$$

Let p_k , p_{k+1} , ..., p_t be all primes between n+2 and 2n+1, then

$$\theta(2n+1)-\theta(n+1)=\sum_{n+2\leq p\leq 2n+1}\log p=\log(p_kp_{k+1}\ldots p_t).$$

But
$$\binom{2n+1}{n} = \frac{(2n+1)\cdot 2n\dots(n+2)}{n!}$$
 so all of p_k, \dots, p_m divide $\binom{2n+1}{n}$.

We had

$$n\log 4 \ge \log \binom{2n+1}{n}.$$

Let $p_k, p_{k+1}, \ldots, p_t$ be all primes between n+2 and 2n+1, then

$$\theta(2n+1)-\theta(n+1)=\sum_{n+2\leq p\leq 2n+1}\log p=\log(p_kp_{k+1}\ldots p_t).$$

But $\binom{2n+1}{n} = \frac{(2n+1)\cdot 2n\ldots(n+2)}{n!}$ so all of p_k, \ldots, p_m divide $\binom{2n+1}{n}$. Thus their product is less than $\binom{2n+1}{n}$.

We had

$$n\log 4 \ge \log \binom{2n+1}{n}.$$

Let $p_k, p_{k+1}, \ldots, p_t$ be all primes between n+2 and 2n+1, then

$$\Theta(2n+1) - \Theta(n+1) = \sum_{n+2 \le p \le 2n+1} \log p = \log(p_k p_{k+1} \dots p_t).$$

But $\binom{2n+1}{n} = \frac{(2n+1)\cdot 2n\ldots(n+2)}{n!}$ so all of p_k, \ldots, p_m divide $\binom{2n+1}{n}$. Thus their product is less than $\binom{2n+1}{n}$. Hence,

$$\theta(2n+1) - \theta(n+1) \le \log \binom{2n+1}{n} \le n \log 4.$$

We'll finish by induction.

We'll finish by induction. Suppose that

 $\theta(n) \leq n \log 4.$

We'll finish by induction. Suppose that

 $\theta(n) \leq n \log 4.$

If n + 1 is not a prime then

 $\theta(n+1) = \theta(n)$

We'll finish by induction. Suppose that

 $\theta(n) \leq n \log 4.$

If n + 1 is not a prime then

 $\theta(n+1) = \theta(n) \le n \log 4$

We'll finish by induction. Suppose that

 $\theta(n) \leq n \log 4.$

If n + 1 is not a prime then

$$\theta(n+1) = \theta(n) \le n \log 4 \le (n+1) \log 4.$$

We'll finish by induction. Suppose that

 $\theta(n) \leq n \log 4.$

If n+1 is not a prime then

 $\theta(n+1) = \theta(n) \le n \log 4 \le (n+1) \log 4.$

We'll finish by induction. Suppose that

 $\theta(n) \leq n \log 4.$

If n+1 is not a prime then

 $\theta(n+1) = \theta(n) \le n \log 4 \le (n+1) \log 4.$

$$\theta(n) = \theta(2m+1)$$

We'll finish by induction. Suppose that

 $\theta(n) \leq n \log 4.$

If n+1 is not a prime then

 $\theta(n+1) = \theta(n) \le n \log 4 \le (n+1) \log 4.$

$$\theta(n) = \theta(2m+1) \le m \log 4 + \theta(m+1)$$

We'll finish by induction. Suppose that

 $\theta(n) \leq n \log 4.$

If n+1 is not a prime then

 $\theta(n+1) = \theta(n) \le n \log 4 \le (n+1) \log 4.$

$$\theta(n) = \theta(2m+1) \le m \log 4 + \theta(m+1)$$

$$\le m \log 4 + (m+1) \log 4$$

We'll finish by induction. Suppose that

 $\theta(n) \leq n \log 4.$

If n + 1 is not a prime then

$$\theta(n+1) = \theta(n) \le n \log 4 \le (n+1) \log 4.$$

$$\begin{aligned} \theta(n) &= \theta(2m+1) \leq m \log 4 + \theta(m+1) \\ &\leq m \log 4 + (m+1) \log 4 \\ &= (2m+1) \log 4 = n \log 4 \end{aligned}$$

Recall that we wish to prove that $\frac{\pi(x)\log x}{x} \le A$.

Recall that we wish to prove that $\frac{\pi(x)\log x}{x} \le A$.

Proof.

By Lemma

 $\sum \log p \le x \log 4.$ \sqrt{x}

Recall that we wish to prove that $\frac{\pi(x)\log x}{x} \leq A$.

Proof.

By Lemma

$$\sum_{\sqrt{x}$$

So

$$\left(\pi(x) - \pi(\sqrt{x})\right)\log\sqrt{x} \le x\log 4.$$

Recall that we wish to prove that $\frac{\pi(x)\log x}{x} \le A$.

Proof.

By Lemma

$$\sum_{\sqrt{x}$$

So

$$(\pi(x) - \pi(\sqrt{x})) \log \sqrt{x} \le x \log 4.$$

This yields $(\log \sqrt{x} = \frac{1}{2} \log x)$

Recall that we wish to prove that $\frac{\pi(x)\log x}{x} \le A$.

Proof.

By Lemma

$$\sum_{\sqrt{x}$$

So

$$(\pi(x) - \pi(\sqrt{x})) \log \sqrt{x} \le x \log 4.$$

This yields $(\log \sqrt{x} = \frac{1}{2} \log x)$

$$\pi(x) \le \frac{2x\log 4}{\log x} + \pi(\sqrt{x})$$

Recall that we wish to prove that $\frac{\pi(x)\log x}{x} \le A$.

Proof.

By Lemma

$$\sum_{\sqrt{x}$$

So

$$(\pi(x) - \pi(\sqrt{x})) \log \sqrt{x} \le x \log 4.$$

This yields $(\log \sqrt{x} = \frac{1}{2} \log x)$

$$\pi(x) \le \frac{2x\log 4}{\log x} + \pi(\sqrt{x}) \le \frac{2x\log 4}{\log x} + \sqrt{x}$$

Recall that we wish to prove that $\frac{\pi(x)\log x}{x} \le A$.

Proof.

By Lemma

$$\sum_{\sqrt{x}$$

So

$$(\pi(x) - \pi(\sqrt{x})) \log \sqrt{x} \le x \log 4.$$

This yields $(\log \sqrt{x} = \frac{1}{2} \log x)$

$$\pi(x) \le \frac{2x\log 4}{\log x} + \pi(\sqrt{x}) \le \frac{2x\log 4}{\log x} + \sqrt{x}.$$

But \sqrt{x} is much smaller than $\frac{x}{\log x}$.

Full Proof

Requires complex analytic methods (Riemann)

Full Proof

Requires complex analytic methods (Riemann)

• Define the function
$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

Full Proof

Requires complex analytic methods (Riemann)

• Define the function
$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

• Recall the product we had $\prod_{p \le R} \frac{1}{1 - \frac{1}{p}}$
Full Proof

- Requires complex analytic methods (Riemann)
- Define the function $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$ • Recall the product we had $\prod_{p \le R} \frac{1}{1 - \frac{1}{p}}$ • Can show that

$$\zeta(s) = \prod_p \frac{1}{1 - \frac{1}{p^s}}$$

Full Proof

- Requires complex analytic methods (Riemann)
- Define the function $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$ • Recall the product we had $\prod_{p \le R} \frac{1}{1 - \frac{1}{p}}$ • Can show that $\zeta(s) = \prod_p \frac{1}{1 - \frac{1}{p^s}}$
- Riemann considered this as a function of a complex variable

Full Proof

- Requires complex analytic methods (Riemann)
- Define the function $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$ • Recall the product we had $\prod_{p \le R} \frac{1}{1 - \frac{1}{p}}$ • Can show that $\zeta(s) = \prod_p \frac{1}{1 - \frac{1}{p^s}}$
- Riemann considered this as a function of a complex variable
- PNT relies on showing that $\zeta(1+it) \neq 0$ where $i = \sqrt{-1}$ and $t \neq 0$

Not that good numerical approximation

- · Not that good numerical approximation
- Gauß noticed this too. His answer: $\text{Li}(x) = \int_2^x \frac{1}{\log t} dt$

- · Not that good numerical approximation
- Gauß noticed this too. His answer: $\text{Li}(x) = \int_2^x \frac{1}{\log t} dt$

- · Not that good numerical approximation
- Gauß noticed this too. His answer: $\text{Li}(x) = \int_2^x \frac{1}{\log t} dt$

• PNT
$$\iff \lim_{x \to \infty} \frac{\pi(x)}{\operatorname{Li}(x)} = 1$$

Obtaining the best possible approximation in PNT

- Obtaining the best possible approximation in PNT
 - Equivalent to the Riemann Hypothesis (Millenium Problem)

- Obtaining the best possible approximation in PNT
 - Equivalent to the Riemann Hypothesis (Millenium Problem)
- Define $\pi_2(x)$ to be the number of twin primes up to x

- Obtaining the best possible approximation in PNT
 - Equivalent to the Riemann Hypothesis (Millenium Problem)
- Define $\pi_2(x)$ to be the number of twin primes up to x
 - Prove PNT with π₂

$1+2+\ldots+99+100$

$1+2+\ldots+99+100$

$+100+99+\ldots+2+1$

$1+2+\ldots+99+100$

$+100+99+\ldots+2+1$

$= 101 + 101 + \ldots 101 + 101$

$1+2+\ldots+99+100$

$+100+99+\ldots+2+1$

 $= 101 + 101 + \ldots 101 + 101$

$$=\frac{1}{2} \cdot 100 \cdot 101 = 50 \cdot 101 = 5050$$

$1+2+\ldots+99+100$

$+100+99+\ldots+2+1$

 $= 101 + 101 + \ldots 101 + 101$

$$=\frac{1}{2} \cdot 100 \cdot 101 = 50 \cdot 101 = 5050$$

Thanks!

$1 + 2 + \ldots + 99 + 100$

$+100+99+\ldots+2+1$

 $= 101 + 101 + \ldots 101 + 101$

$$=\frac{1}{2} \cdot 100 \cdot 101 = 50 \cdot 101 = 5050$$

Thanks!

Any questions?

References I

G. Jameson
The Prime Number Theorem
Cambridge, 2003

R. Murty

Problems in analytic number theory Springer, 2008

D. Zagier

Newman's Short Proof of the Prime Number Theorem The American Mathematical Monthly, 104, 1997

T. Apostol

A Centennial History of the Prime Number Theorem Engineering & Science, 4, 1996

References II

L. Goldstein

A History of the Prime Number Theorem The American Mathematical Monthly, 80, 1973

B. Petersen

Prime Number Theorem