Newman's Short Proof of the Prime Number Theorem

Niko Laaksonen

Department of Mathematics UCL

March 13, 2012

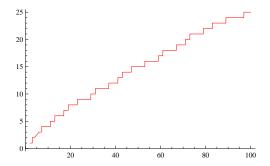
Let us denote the number of primes up to x by $\pi(x)$.

Let us denote the number of primes up to x by $\pi(x)$.

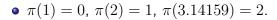
• $\pi(1) = 0$, $\pi(2) = 1$, $\pi(3.14159) = 2$.

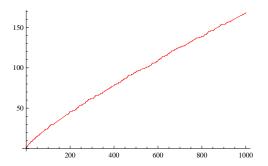
Let us denote the number of primes up to x by $\pi(x)$.

•
$$\pi(1) = 0$$
, $\pi(2) = 1$, $\pi(3.14159) = 2$.

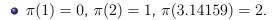


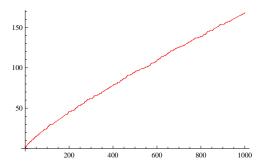
Let us denote the number of primes up to x by $\pi(x)$.

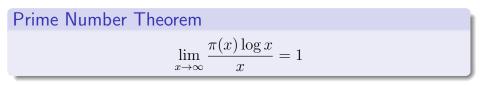




Let us denote the number of primes up to x by $\pi(x)$.

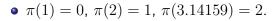


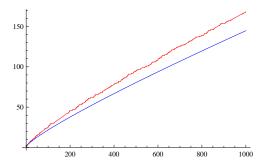


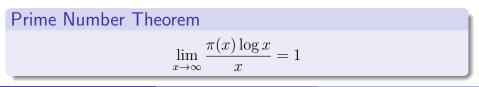


Niko Laaksonen (UCL)

Let us denote the number of primes up to x by $\pi(x)$.



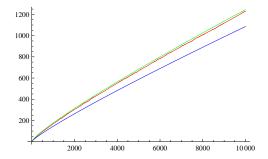


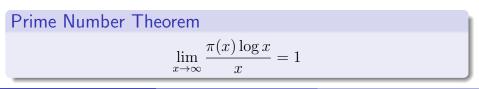


Niko Laaksonen (UCL)

Let us denote the number of primes up to x by $\pi(x)$.

•
$$\pi(1) = 0$$
, $\pi(2) = 1$, $\pi(3.14159) = 2$.





Niko Laaksonen (UCL)

•
$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

•
$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}, \quad \Re(s) > 1$$

•
$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}, \quad \Re(s) > 1$$

$$\Phi(s) = \sum_{p} \frac{\log p}{p^s}$$

•
$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}, \quad \Re(s) > 1$$

$$\Phi(s) = \sum_{p} \frac{\log p}{p^s}, \quad \theta(x) = \sum_{p \le x} \log p$$

Broken down into 6 short properties.

Broken down into 6 short properties. Depend on the following theorem.

Broken down into 6 short properties. Depend on the following theorem.

Analytic Theorem

Let f be a real-valued function such that $g(z) = \int_0^\infty f(t)e^{-zt} dt$ exists for $\Re(z) > 0$ and extends holomorphically to $\Re(z) \ge 0$.

Broken down into 6 short properties. Depend on the following theorem.

Analytic Theorem

Let f be a real-valued function such that $g(z) = \int_0^\infty f(t)e^{-zt} dt$ exists for $\Re(z) > 0$ and extends holomorphically to $\Re(z) \ge 0$. Then

$$g(0) = \int_0^\infty f(t) \ dt$$

exists.

Proposition

$$\int_{1}^{\infty} \frac{\theta(x) - x}{x^2} \, dx$$

is a convergent integral.

Proposition

$$\int_{1}^{\infty} \frac{\theta(x) - x}{x^2} \, dx$$

is a convergent integral.

Proof.

$$\Phi(s) = \sum_p \frac{\log p}{p^s}$$

Proposition

$$\int_{1}^{\infty} \frac{\theta(x) - x}{x^2} \, dx$$

is a convergent integral.

Proof.

$$\Phi(s) = \sum_{p} \frac{\log p}{p^s} = \int_1^\infty \frac{d\theta(x)}{x^s}$$

Proposition

$$\int_{1}^{\infty} \frac{\theta(x) - x}{x^2} \, dx$$

is a convergent integral.

Proof.

$$\Phi(s) = \sum_{p} \frac{\log p}{p^s} = \int_1^\infty \frac{d\theta(x)}{x^s} = s \int_1^\infty \frac{\theta(x)}{x^{s+1}} dx$$

Proposition

$$\int_{1}^{\infty} \frac{\theta(x) - x}{x^2} \, dx$$

is a convergent integral.

Proof.

$$\Phi(s) = \sum_{p} \frac{\log p}{p^s} = \int_1^\infty \frac{d\theta(x)}{x^s} = s \int_1^\infty \frac{\theta(x)}{x^{s+1}} \, dx = s \int_0^\infty e^{-st} \theta(e^t) \, dt.$$

Proposition

$$\int_{1}^{\infty} \frac{\theta(x) - x}{x^2} \, dx$$

is a convergent integral.

Proof.

For $\Re(s)>1$ we have

$$\Phi(s) = \sum_{p} \frac{\log p}{p^s} = \int_1^\infty \frac{d\theta(x)}{x^s} = s \int_1^\infty \frac{\theta(x)}{x^{s+1}} \, dx = s \int_0^\infty e^{-st} \theta(e^t) \, dt$$

Apply Analytic Theorem with $f(t) = \theta(e^t)e^{-t} - 1$, and $g(z) = \frac{\Phi(z+1)}{z+1} - \frac{1}{z}$.

Proposition

$$\lim_{x \to \infty} \frac{\theta(x)}{x} = 1$$

Proposition

$$\lim_{x \to \infty} \frac{\theta(x)}{x} = 1$$

Proof.

Suppose that for some $\lambda > 1$ there are large x with $\theta(x) \ge \lambda x$. For such x:

$$\int_{x}^{\lambda x} \frac{\theta(t) - t}{t^2} dt \ge \int_{x}^{\lambda x} \frac{\lambda x - t}{t^2} dt$$

Proposition

$$\lim_{x \to \infty} \frac{\theta(x)}{x} = 1$$

Proof.

Suppose that for some $\lambda > 1$ there are large x with $\theta(x) \ge \lambda x$. For such x:

$$\int_{x}^{\lambda x} \frac{\theta(t) - t}{t^2} dt \ge \int_{x}^{\lambda x} \frac{\lambda x - t}{t^2} dt = \int_{1}^{\lambda} \frac{\lambda - u}{u^2} du > 0.$$

Proposition

$$\lim_{x \to \infty} \frac{\theta(x)}{x} = 1$$

Proof.

Suppose that for some $\lambda > 1$ there are large x with $\theta(x) \ge \lambda x$. For such x:

$$\int_{x}^{\lambda x} \frac{\theta(t) - t}{t^2} dt \ge \int_{x}^{\lambda x} \frac{\lambda x - t}{t^2} dt = \int_{1}^{\lambda} \frac{\lambda - u}{u^2} du > 0.$$

This is a contradiction. Similarly for $\lambda < 1$.

Proof of PNT.

$$\theta(x) = \sum_{p \le x} \log p$$

Proof of PNT.

$$\theta(x) = \sum_{p \le x} \log p \le \sum_{p \le x} \log x = \pi(x) \log x$$

Proof of PNT.

$$\theta(x) = \sum_{p \le x} \log p \le \sum_{p \le x} \log x = \pi(x) \log x$$

$$\theta(x) \geq \sum_{x^{1-\epsilon} \leq p \leq x} \log p$$

Proof of PNT.

$$\theta(x) = \sum_{p \le x} \log p \le \sum_{p \le x} \log x = \pi(x) \log x$$

$$\theta(x) \ge \sum_{x^{1-\epsilon} \le p \le x} \log p \ge \sum_{x^{1-\epsilon} \le p \le x} (1-\epsilon) \log x$$

Proof of PNT.

$$\theta(x) = \sum_{p \le x} \log p \le \sum_{p \le x} \log x = \pi(x) \log x,$$

$$\begin{split} \theta(x) \geq \sum_{x^{1-\epsilon} \leq p \leq x} \log p \geq \sum_{x^{1-\epsilon} \leq p \leq x} (1-\epsilon) \log x \\ &= (1-\epsilon) \log x \left[\pi(x) + O(x^{1-\epsilon}) \right]. \end{split}$$

Proof of PNT.

For any $\epsilon>0,$

$$\theta(x) = \sum_{p \le x} \log p \le \sum_{p \le x} \log x = \pi(x) \log x,$$

$$\begin{split} \theta(x) \geq \sum_{x^{1-\epsilon} \leq p \leq x} \log p \geq \sum_{x^{1-\epsilon} \leq p \leq x} (1-\epsilon) \log x \\ &= (1-\epsilon) \log x \left[\pi(x) + O(x^{1-\epsilon}) \right]. \end{split}$$

Thus

$$(1-\epsilon)^{-1}\frac{\theta(x)}{x} \ge \frac{\pi(x)\log x}{x} \ge \frac{\theta(x)}{x}$$

Analytic Theorem

Let f be a real-valued function such that $g(z) = \int_0^\infty f(t)e^{-zt} dt$ exists for $\Re(z) > 0$ and extends holomorphically to $\Re(z) \ge 0$. Then

$$g(0) := \int_0^\infty f(t) \ dt$$

exists.

Analytic Theorem

Let f be a real-valued function such that $g(z) = \int_0^\infty f(t)e^{-zt} dt$ exists for $\Re(z) > 0$ and extends holomorphically to $\Re(z) \ge 0$. Then

$$g(0) := \int_0^\infty f(t) \ dt$$

exists.

For T > 0 define $g_T(z) = \int_0^T f(t) e^{-zt} dt$.

Analytic Theorem

Let f be a real-valued function such that $g(z) = \int_0^\infty f(t)e^{-zt} dt$ exists for $\Re(z) > 0$ and extends holomorphically to $\Re(z) \ge 0$. Then

$$g(0) := \int_0^\infty f(t) \ dt$$

exists.

For T > 0 define $g_T(z) = \int_0^T f(t)e^{-zt} dt$. This an entire function.

Analytic Theorem

Let f be a real-valued function such that $g(z) = \int_0^\infty f(t)e^{-zt} dt$ exists for $\Re(z) > 0$ and extends holomorphically to $\Re(z) \ge 0$. Then

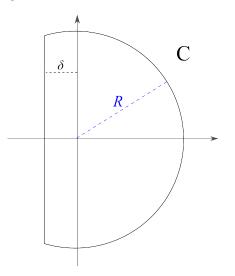
$$g(0) := \int_0^\infty f(t) \ dt$$

exists.

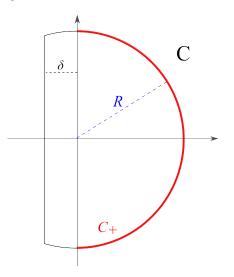
For T > 0 define $g_T(z) = \int_0^T f(t)e^{-zt} dt$. This an entire function. Suffices to prove that

$$\lim_{T \to \infty} g_T(0) = g(0).$$

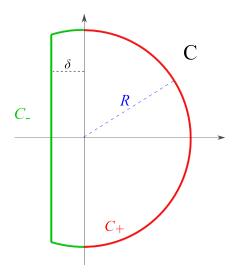
Define the following contour:



Define the following contour:



Define the following contour:



Proof of Analytic Theorem - III Thus

$$g(0) - g_T(0)$$

$$g(0) - g_T(0) = \frac{1}{2\pi i} \int_C (g(z) - g_T(z)) e^{zT} \left(1 + \frac{z^2}{R^2}\right) \frac{dz}{z}.$$

$$g(0) - g_T(0) = \frac{1}{2\pi i} \int_C (g(z) - g_T(z)) e^{zT} \left(1 + \frac{z^2}{R^2}\right) \frac{dz}{z}.$$

On C_+ we have

$$|g(z) - g_T(z)| = \left| \int_T^\infty f(t) e^{-zt} dt \right|$$

$$g(0) - g_T(0) = \frac{1}{2\pi i} \int_C (g(z) - g_T(z)) e^{zT} \left(1 + \frac{z^2}{R^2}\right) \frac{dz}{z}.$$

On C_+ we have

$$|g(z) - g_T(z)| = \left| \int_T^\infty f(t) e^{-zt} dt \right| \le B \frac{e^{-\Re(z)T}}{\Re(z)},$$

$$g(0) - g_T(0) = \frac{1}{2\pi i} \int_C (g(z) - g_T(z)) e^{zT} \left(1 + \frac{z^2}{R^2}\right) \frac{dz}{z}.$$

On C_+ we have

$$\left|g(z) - g_T(z)\right| = \left|\int_T^\infty f(t)e^{-zt} dt\right| \le B\frac{e^{-\Re(z)T}}{\Re(z)},$$

where B is an upper bound for |f(t)|.

$$g(0) - g_T(0) = \frac{1}{2\pi i} \int_C (g(z) - g_T(z)) e^{zT} \left(1 + \frac{z^2}{R^2}\right) \frac{dz}{z}.$$

On C_+ we have

$$|g(z) - g_T(z)| = \left| \int_T^\infty f(t) e^{-zt} dt \right| \le B \frac{e^{-\Re(z)T}}{\Re(z)},$$

where B is an upper bound for |f(t)|. Also

$$\left|e^{zT}\left(1+\frac{z^2}{R^2}\right)\frac{1}{z}\right| = e^{\Re(z)T}\frac{2\Re(z)}{R^2}.$$

$$g(0) - g_T(0) = \frac{1}{2\pi i} \int_C (g(z) - g_T(z)) e^{zT} \left(1 + \frac{z^2}{R^2}\right) \frac{dz}{z}.$$

On C_+ we have

$$|g(z) - g_T(z)| = \left| \int_T^\infty f(t) e^{-zt} dt \right| \le B \frac{e^{-\Re(z)T}}{\Re(z)},$$

where B is an upper bound for |f(t)|. Also

$$\left|e^{zT}\left(1+\frac{z^2}{R^2}\right)\frac{1}{z}\right| = e^{\Re(z)T}\frac{2\Re(z)}{R^2}$$

Hence we can estimate the integral on C_+ by

$$\frac{1}{2\pi} \cdot R\pi \cdot B \cdot \frac{2}{R^2} = \frac{B}{R}$$

For C_{-} we look at g and g_{T} separately.

For C_{-} we look at g and g_{T} separately. g_{T} is entire so we can deform the path of integration to C'_{-} (reflection of C_{+}).

For C_{-} we look at g and g_{T} separately. g_{T} is entire so we can deform the path of integration to C'_{-} (reflection of C_{+}). Therefore the integral over C'_{-} is bounded by B/R.

For C_{-} we look at g and g_{T} separately. g_{T} is entire so we can deform the path of integration to C'_{-} (reflection of C_{+}). Therefore the integral over C'_{-} is bounded by B/R.

The remaining integral is
$$\int_{C_{-}} g(z) \left(1 + \frac{z^2}{R^2}\right) e^{zT} \frac{dz}{z}.$$

This tends to 0 as $T \to \infty$, because $e^{zT} \to 0$ rapidly for $\Re(z) < 0$.
Hence

$$\limsup_{T \to \infty} |g(0) - g_T(0)| \le \frac{2B}{R}.$$

Letting $R \to \infty$ proves the theorem.

•
$$\zeta(s) = \prod_p (1 - p^{-s})^{-1}$$

•
$$\zeta(s) = \prod_p (1 - p^{-s})^{-1}$$

• $\zeta(s) - \frac{1}{s-1}$ is holomorphic in $\Re(s) > 0$

•
$$\zeta(s) = \prod_{p} (1 - p^{-s})^{-1}$$

• $\zeta(s) - \frac{1}{s-1}$ is holomorphic in $\Re(s) > 0$
• $\zeta(s) - \frac{1}{s-1} = \sum_{n} \frac{1}{n^{s}} - \int_{1}^{\infty} \frac{1}{x^{s}} dx = \sum_{n} \int_{n}^{n+1} \left(\frac{1}{n^{s}} - \frac{1}{x^{s}}\right) dx.$
• $\theta(x) = O(x)$

•
$$\zeta(s) = \prod_{p} (1 - p^{-s})^{-1}$$

• $\zeta(s) - \frac{1}{s-1}$ is holomorphic in $\Re(s) > 0$
• $\zeta(s) - \frac{1}{s-1} = \sum_{n} \frac{1}{n^{s}} - \int_{1}^{\infty} \frac{1}{x^{s}} dx = \sum_{n} \int_{n}^{n+1} \left(\frac{1}{n^{s}} - \frac{1}{x^{s}}\right) dx.$
• $\theta(x) = O(x)$
• Write $2^{2n} = \binom{2n}{0} + \ldots + \binom{2n}{2n} \ge \binom{2n}{n} \ge \prod_{n$

•
$$\zeta(s) = \prod_{p} (1 - p^{-s})^{-1}$$

• $\zeta(s) - \frac{1}{s-1}$ is holomorphic in $\Re(s) > 0$
• $\zeta(s) - \frac{1}{s-1} = \sum_{n} \frac{1}{n^{s}} - \int_{1}^{\infty} \frac{1}{x^{s}} dx = \sum_{n} \int_{n}^{n+1} \left(\frac{1}{n^{s}} - \frac{1}{x^{s}}\right) dx.$
• $\theta(x) = O(x)$
• Write $2^{2n} = \binom{2n}{0} + \ldots + \binom{2n}{2n} \ge \binom{2n}{n} \ge \prod_{n
• Sum over $x, x/2, \ldots, x/2^{r}$$

•
$$\zeta(s) = \prod_{p} (1 - p^{-s})^{-1}$$

• $\zeta(s) - \frac{1}{s-1}$ is holomorphic in $\Re(s) > 0$
• $\zeta(s) - \frac{1}{s-1} = \sum_{n} \frac{1}{n^{s}} - \int_{1}^{\infty} \frac{1}{x^{s}} dx = \sum_{n} \int_{n}^{n+1} \left(\frac{1}{n^{s}} - \frac{1}{x^{s}}\right) dx.$
• $\theta(x) = O(x)$
• Write $2^{2n} = \binom{2n}{0} + \ldots + \binom{2n}{2n} \ge \binom{2n}{n} \ge \prod_{n
• Sum over $x, x/2, \ldots, x/2^{r}$$

• $\zeta(s) \neq 0$ and $\Phi(s) - 1/(s-1)$ is holomorphic for $\Re(s) \geq 1$.

•
$$\zeta(s) = \prod_{p} (1 - p^{-s})^{-1}$$

• $\zeta(s) - \frac{1}{s-1}$ is holomorphic in $\Re(s) > 0$
• $\zeta(s) - \frac{1}{s-1} = \sum_{n} \frac{1}{n^{s}} - \int_{1}^{\infty} \frac{1}{x^{s}} dx = \sum_{n} \int_{n}^{n+1} \left(\frac{1}{n^{s}} - \frac{1}{x^{s}}\right) dx.$
• $\theta(x) = O(x)$
• Write $2^{2n} = \binom{2n}{0} + \ldots + \binom{2n}{2n} \ge \binom{2n}{n} \ge \prod_{n
• Sum over $x, x/2, \ldots, x/2^{r}$$

• $\zeta(s) \neq 0$ and $\Phi(s) - 1/(s-1)$ is holomorphic for $\Re(s) \ge 1$.

Primes in arithmetic progressions

References

Zagier, D., Newman's Short Proof of the Prime Number Theorem, The American Mathematical Monthly, Vol. 104, No. 8 (Oct., 1997)