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Prime Geodesic Theorem in H3

2D Setting

Let M = Γ\H, where H = {x+ iy : y > 0} and Γ < PSL2(R)
is a cofinite Fuchsian group.

Also set

πΓ(x) = ]{` closed geodesic : length(`) ≤ log x}.

A Prime Geodesic Theorem:

πΓ(x) ∼ Li(x).

Suppose γ ∈ Γ is hyperbolic: it has 2 fixed points on R̂. The
axis between these points gives a closed geodesic on M . This
is invariant under conjugation.
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Prime Geodesic Theorem in H3

Define
ψΓ(X) =

∑
N{P}≤X

ΛΓ(N{P}),

where ΛΓ(N{P}) = logN{P0}, if {P} = {P ν0 } for {P0}
primitive hyperbolic conjugacy class, and 0 otherwise.
Let λj = sj(1− sj) = 1

4 + t2j . Selberg:

ψΓ(X) =
∑

1/2<sj≤1

Xsj

sj
+ EΓ(X),

EΓ(X) = O(X3/4).

For Γ = PSL2(Z),

EΓ(X)� X35/48+ε Iwaniec (1984)
� X7/10+ε Luo and Sarnak (1995)
� X25/36+ε Soundararajan and Young (2013)
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Prime Geodesic Theorem in H3

PGT vs PNT

Conjecture: square root cancellation, EΓ(X) = O(X1/2+ε).

Explicit formula for Γ = PSL2(Z) (Iwaniec, 1984):

ψΓ(X) = X +
∑
|tj |≤T

X
1
2 +itj

1
2 + itj

+O

(
X

T
log2X

)
.

Trivially this only gives an error O(X1/2T +XT−1 log2X),
which balances to O(X3/4+ε).
Too many eigenvalues (non-trivial zeros of Selberg zeta
function).
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Prime Geodesic Theorem in H3

3D Setting

Let M = Γ\H3, where

H3 = {p = z + jy = (x1, x2, y) : z ∈ C, y > 0}

and Γ is a cofinite discrete subgroup of PSL2(C).

Under the hyperbolic metric on H3, get

dµ(p) = dx1 dx2 dy

y3 .

PSL2(C) acts on H3 with the action for γ =
(
a b
c d

)
given by

γp = (ap+ b)(cp+ d)−1 (taken in quaternions)
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PGT in 3D
As before set ψΓ(X) =

∑
N{T}≤X ΛΓ(N{T}), where T is

hyperbolic or loxodromic.

Then

ψΓ(X) =
∑

1<sj≤2

Xsj

sj
+ EΓ(X),

where λj = sj(2− sj) = 1 + r2
j , so sj = 1 + irj .

Let Γ = PSL2(O), where O is the ring of integers of an
imaginary quadratic field of class number one.

Sarnak, 1983:

EΓ(X)� X5/3+ε.

For Γ = PSL2(Z[i]), Koyama, 2001 (conditionally):

EΓ(X)� X11/7+ε.
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Main Theorems

Theorem 1 (Chatzakos–Cherubini–L)

For Γ = PSL2(Z[i]),

EΓ(X) = O(X13/8+ε).

Theorem 2 (Chatzakos–Cherubini–L)

For general cofinite Kleinian group Γ, V > 1,

1
V

∫ 2V

V
|EΓ(x)|2dx� V 16/5(log V )2/5.
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Summary of proof of Theorem 1
Main improvement comes from proving mean subconvexity:

Lemma
Let uj be a Maass-Hecke cusp form on M , then∑

rj≤T

rj
sinh πrj

∣∣∣L(1
2 + it, uj ⊗ uj)

∣∣∣� T 7/2+ε|t|1+ε.

Let Fourier coefficients of uj be ρj(n), then

L(s, uj ⊗ uj) =
∑
n∈O∗

|ρj(n)|2

N(n)s .

In the proof we make use of a spectral large sieve by Watt (2014).
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In the theme of large sieves...

Theorem (Spectral Large Sieve (Watt 2014))

Let Γ = PSL2(Z[i]), T,N � q and {an} a sequence with an ∈ C.
Then

∑
rj≤T

rj
sinh πrj

∣∣∣∣∣∣∣
∑

N<|n|2≤2N

anρj(n)

∣∣∣∣∣∣∣
2

�
(
T 3 + T 3/2N1+ε

)
‖aN‖2.
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Summary of proof of Theorem 1 (cont.)
We can show that∑
n∈O

rjf(|n|)|ρj(n)|2

sinh πrj
= cN+O

(
N1/2rj
sinh πrj

∫ ∞
0

|L(1
2 + it, uj ⊗ uj)|

(1 + |t|)p dt

)
.

Sum over j to get

1
N

∑
n∈O

∑
|rj |≤T

f(|n|)rj |ρj(n)|2

sinh πrj
Xirj exp

(−rj
T

)
=

c
∑
|rj |≤T

Xirj exp
(−rj
T

)
+O(T 7/2+εN−1/2).

Then apply Kuznetsov to the inner sum on LHS, and the explicit
formula by Nakasuji (2001) on RHS. For 1 ≤ T < X1/2,

EΓ(X) =
∑
|rj |≤T

X1+irj

1 + irj
+O

(
X2

T
logX

)
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f(|n|)rj |ρj(n)|2

sinh πrj
Xirj exp

(−rj
T

)
=

c
∑
|rj |≤T

Xirj exp
(−rj
T

)
+O(T 7/2+εN−1/2).

Then apply Kuznetsov to the inner sum on LHS, and the explicit
formula by Nakasuji (2001) on RHS. For 1 ≤ T < X1/2,

EΓ(X) =
∑
|rj |≤T

X1+irj

1 + irj
+O

(
X2

T
logX

)
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Summary of proof of Theorem 2
Let gs(x) =

(
sinh |x|2

)2
1[0,s](x), s = logX.

Then

ψΓ(X) =
∑

{T}hyp+lox

gs(logN(T ))Λ(N(T0))
|a(T )− a(T )−1|2

+O(X3/2),

where N(T ) = |a(T )|2. So from Selberg Trace Formula get

ψ±(X) =
∑
j

h(rj)−
1

4π

∫ ∞
−∞

h(t)ϕ
′

ϕ
(1 + it)dt+O(X).

Then for discrete spectrum get

∫ 2V

V

∣∣∣∣∣ψ±(x)− x2

2

∣∣∣∣∣
2

dx =
∫ 2V

V

∣∣∣∣∣∣
∑
rj>0

h±(rj)

∣∣∣∣∣∣
2

dx.

Open up the square and estimate (careful with oscillations).
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Some immediate corollaries

Corollary
For any fixed δ > 0 there is a set A ⊂ [2,∞) of finite logarithmic
measure such that EΓ(X) = O(X8/5+δ) as X →∞, X 6∈ A.

Corollary
For every ε > 0, we have∑

d∈D
|εd|≤X

h(d) = Li(X4) +O(X13/4+ε).

Here D is the set of discriminants of binary quadratic forms over
Z[i].
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Thank you!


